В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
kurban052
kurban052
25.10.2020 17:03 •  Геометрия

Упростите выражение очень надо


Упростите выражение очень надо

Показать ответ
Ответ:
viktoriyayudin
viktoriyayudin
18.02.2023 10:47

АВ-диаметр окружности, О-центр окружности. С -точка на окружности, СЕ-перпендикуляр на АВ, СЕ=24см. АЕ=а, ЕВ=с, с-а=14.

а+с -диаметр окружности, (а+с)/2-радиус окружности и ОС=ОА=радиус окруж. 

Треугольник СЕО-прямоугольный , ОЕ=ОА-АЕ=((а+с)/2)-а=(а+с-2а)/2=(с-а)/2

По теореме Пифагора

ОЕ^2+СЕ^2=СО^2

((c-a)/2)^2+24^2=((c+a)/2)^2

c-a=14, значит с=14+а, подставим с в первое уравнение

((14+а-а)/2)^2+24^2=((14+а+а)/2)^2

7^2+576=(7+a)^2

49+14a+a^2=49+576

a^2+14a-576=0

дискрим Д=14^2+4*576=196+2304=2500

корень из Д=50

а1=(-14-50)/2=-32(не может быть отриц.)

а2=(-14+50)/2=18

с=14+18=32

радиус равен (с+а)/2=(18+32)/2=25

 

0,0(0 оценок)
Ответ:
vikaraduga
vikaraduga
14.06.2022 18:11

Решение можно найти двумя

Решение можно найти двумя Проекция боковой грани на основание для правильного тетраэдра равна 1/3 площади основания:

Решение можно найти двумя Проекция боковой грани на основание для правильного тетраэдра равна 1/3 площади основания:So(б.гр) = (1/3)So = 1/3)(a²√3/4) = (a²√3/12) = (8²√3)/12 = (64√3)/12 =

Решение можно найти двумя Проекция боковой грани на основание для правильного тетраэдра равна 1/3 площади основания:So(б.гр) = (1/3)So = 1/3)(a²√3/4) = (a²√3/12) = (8²√3)/12 = (64√3)/12 == 16√3/3 см².

Решение можно найти двумя Проекция боковой грани на основание для правильного тетраэдра равна 1/3 площади основания:So(б.гр) = (1/3)So = 1/3)(a²√3/4) = (a²√3/12) = (8²√3)/12 = (64√3)/12 == 16√3/3 см².2) Для правильного тетраэдра высота основания h равна апофеме A боковой грани. Проекция апофемы на основание равна (1/3) высоты основания.

Решение можно найти двумя Проекция боковой грани на основание для правильного тетраэдра равна 1/3 площади основания:So(б.гр) = (1/3)So = 1/3)(a²√3/4) = (a²√3/12) = (8²√3)/12 = (64√3)/12 == 16√3/3 см².2) Для правильного тетраэдра высота основания h равна апофеме A боковой грани. Проекция апофемы на основание равна (1/3) высоты основания.Косинус угла α наклона боковой грани равен (1/3)h)/(1A) = 1/3.

Решение можно найти двумя Проекция боковой грани на основание для правильного тетраэдра равна 1/3 площади основания:So(б.гр) = (1/3)So = 1/3)(a²√3/4) = (a²√3/12) = (8²√3)/12 = (64√3)/12 == 16√3/3 см².2) Для правильного тетраэдра высота основания h равна апофеме A боковой грани. Проекция апофемы на основание равна (1/3) высоты основания.Косинус угла α наклона боковой грани равен (1/3)h)/(1A) = 1/3.Площадь проекции боковой грани на основание равна:

Решение можно найти двумя Проекция боковой грани на основание для правильного тетраэдра равна 1/3 площади основания:So(б.гр) = (1/3)So = 1/3)(a²√3/4) = (a²√3/12) = (8²√3)/12 = (64√3)/12 == 16√3/3 см².2) Для правильного тетраэдра высота основания h равна апофеме A боковой грани. Проекция апофемы на основание равна (1/3) высоты основания.Косинус угла α наклона боковой грани равен (1/3)h)/(1A) = 1/3.Площадь проекции боковой грани на основание равна:So(б.гр) = S(б.гр)*cos α = (8²√3/4)*(1/3) = (64√3)/12 = 16√3/3 см².

Объяснение:

как то так

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота