Доказать: треугольник КМР= треугольнику KPN Доказательство:треугольник KMP= треугольнику КРN по первому признаку равенства треугольников (по двум сторонам и углу между ними), так как KM=KN, угол МКР= углу PKN, сторона КР общая.
Дано: ВС=АД, АВ=СД, АС - общая сторона ать: треугольники АВС и АСД равны.
Док-во: треугольники ABC и АСД равны по третьему признаку равенства треугольников ( по трем сторонам), так как ВС=АД, АВ=СД, АС - общая сторона
Дано: углы АСД и ДСВ равны, углы СДА и СДВ равны, СД - общая сторона Доказать: Треугольники АСД и СДВ
равны Доказательство:треугольники АСД и СДВ равны по второму признаку равенства треугольников (по стороне и двум прилежащим к ней углам), так как углы АСД и ДСВ равны, углы СДА и СДВ равны, СД - общая сторона.
Из условия нам известно, что ∠DOC равен пяти углам COB.
Если посмотреть на чертеж, то мы увидим, что ∠DOC и ∠COB смежные, а следовательно, их сумма равна 180°. Для нахождения углов DOC и COB составим линейное уравнение:
Пусть x - ∠DOC, тогда ∠COB - 5x. (угол COB равен 5x, т.к. он в 5 раз больше угла DOC)
Дано: KM=KN, угол МКР= углу PKN, сторона КР общая
Доказать: треугольник КМР= треугольнику KPN Доказательство:треугольник KMP= треугольнику КРN по первому признаку равенства треугольников (по двум сторонам и углу между ними), так как KM=KN, угол МКР= углу PKN, сторона КР общая.
Дано: ВС=АД, АВ=СД, АС - общая сторона ать: треугольники АВС и АСД равны.
Док-во: треугольники ABC и АСД равны по третьему признаку равенства треугольников ( по трем сторонам), так как ВС=АД, АВ=СД, АС - общая сторона
Дано: углы АСД и ДСВ равны, углы СДА и СДВ равны, СД - общая сторона Доказать: Треугольники АСД и СДВ
равны Доказательство:треугольники АСД и СДВ равны по второму признаку равенства треугольников (по стороне и двум прилежащим к ней углам), так как углы АСД и ДСВ равны, углы СДА и СДВ равны, СД - общая сторона.
Объяснение:
Из условия нам известно, что ∠DOC равен пяти углам COB.
Если посмотреть на чертеж, то мы увидим, что ∠DOC и ∠COB смежные, а следовательно, их сумма равна 180°. Для нахождения углов DOC и COB составим линейное уравнение:
Пусть x - ∠DOC, тогда ∠COB - 5x. (угол COB равен 5x, т.к. он в 5 раз больше угла DOC)
Получаем:
x + 5x = 180°
6x = 180°
x = 30° (Это мы нашли x, то есть ∠DOC)
∠COB = 30° * 5 = 150°.
Ну а дальше - дело техники.
∠COD = ∠BOA = 150°(все вертикальные углы равны)
∠BOC = ∠AOD = 30°(все вертикальные углы равны).
Задача решена.