Урівнобедреному трикутнику abc ab=bc точка m перетину медіани віддалена від вершини b на 4см. знайдіть відстань від середини бічної сторони трикутника до його основи
1) Диагонали равны, т.к.это прямоугольник; Рассм. прямоуг. тр-к, образованный сторонами прямоугольника и диагональю, он египетский( с катетами 3 и 4 и гипотенузой 5), а здесь все в 3 раза больше: 3*3; 3*4 и 3*5; диагональ - 15 см. 2) Пусть ромб АВСД; АВ=3х; СД=4х; т.О - пересечение диагоналей; рассм тр-к АСО; АО=1,5х; СО=2х; АС=50 см; по т.Пифагора 4х^2+2,25x^2=2500, 6,25x^2=2500, x^2=2500/6,25, х=50/2,5=500/25=20см; АВ=60см; СД=80см; S=1/2*АВ*СД=1/2*4800=2400см^2; S=cторона*h, h=2400/50=240/5= 48 см. 3) Медиана является и высотой равноб. тр-ка; S=1/2*a*h=1/2*7*12= 7*6=42см^2. а - основание; h - высота.
ЕВ и ЕС - наклонные к плоскости α, ЕА - перпендикуляр к плоскости α, ЕВ=4√5 см, АВ=8 см, ∠ВАС=60°, ВС=7 см. ЕА=√(ЕВ²-АВ²)=√(80-64)=4 см. В тр-ке АВС АС=х. По теореме косинусов ВС²=АВ²+ВС²-2АВ·ВС·cos60, 49=64+х²-2·8·х/2, х²-8х+15=0, х₁=3, х₂=5. АС=3 см, АС`=5 cм. Задача имеет два решение. Такое возможно, ведь в тр-ка ВАС и ВАС` BC=BC`=7 см и тр-ник ВСС` - равнобедренный. 1) В тр-ке ЕАС ЕС=√(ЕА²+АС²)=√(16+9)=5 см. 2) В тр-ке ЕАС` ЕС`=√(EA²+AC`²)=√(16+25)=√41 см. ответ: вторая наклонная равна 1) 5см, 2) √41 см.
Рассм. прямоуг. тр-к, образованный сторонами прямоугольника и диагональю, он египетский( с катетами 3 и 4 и гипотенузой 5), а здесь все в 3 раза больше: 3*3; 3*4 и 3*5; диагональ - 15 см.
2) Пусть ромб АВСД; АВ=3х; СД=4х; т.О - пересечение диагоналей;
рассм тр-к АСО; АО=1,5х; СО=2х; АС=50 см; по т.Пифагора
4х^2+2,25x^2=2500, 6,25x^2=2500, x^2=2500/6,25, х=50/2,5=500/25=20см;
АВ=60см; СД=80см;
S=1/2*АВ*СД=1/2*4800=2400см^2; S=cторона*h, h=2400/50=240/5=
48 см.
3) Медиана является и высотой равноб. тр-ка; S=1/2*a*h=1/2*7*12=
7*6=42см^2. а - основание; h - высота.
ЕА=√(ЕВ²-АВ²)=√(80-64)=4 см.
В тр-ке АВС АС=х. По теореме косинусов ВС²=АВ²+ВС²-2АВ·ВС·cos60,
49=64+х²-2·8·х/2,
х²-8х+15=0,
х₁=3, х₂=5.
АС=3 см, АС`=5 cм.
Задача имеет два решение. Такое возможно, ведь в тр-ка ВАС и ВАС` BC=BC`=7 см и тр-ник ВСС` - равнобедренный.
1) В тр-ке ЕАС ЕС=√(ЕА²+АС²)=√(16+9)=5 см.
2) В тр-ке ЕАС` ЕС`=√(EA²+AC`²)=√(16+25)=√41 см.
ответ: вторая наклонная равна 1) 5см, 2) √41 см.