В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
sofa286
sofa286
25.02.2020 08:32 •  Геометрия

Урівнобедреному трикутнику бічна сторона більше основи в 5 разів, а основа менше суми бічних сторін на 18. знайдіть основу.

Показать ответ
Ответ:
dralov574
dralov574
22.07.2022 06:29
Решение:
Рассмотрим два возможных случая:
1) Пусть длина основания  равнобедренного треугольника на 12 см больше длины его боковых сторон. Длину основания обозначим за х см, тогда по условию длины двух боковых сторон равны (х - 12) см.
Зная, что периметр треугольника равен 45 см, составим и решим уравнение:
х + (х - 12)  + (х - 12) = 45
3х - 24 = 45
3х = 45 + 24
3х = 69
х = 69 : 3
х = 23
23 см - длина основания, 23 - 12 = 11 (см) - длины боковых сторон треугольника.
Заметим, что такого треугольника не существует, для его сторон не выполнено неравенство треугольника, 23 см < 11 см + 11 см - неверно.
 
2) Пусть длина основания  равнобедренного треугольника на 12 см меньше длины его боковых сторон. Длину основания обозначим за х см, тогда по условию длины двух боковых сторон равны (х + 12) см.
Зная, что периметр треугольника равен 45 см, составим и решим уравнение:
х + (х +12)  + (х + 12) = 45
3х + 24 = 45
3х = 45 - 24
3х = 21
х = 21 : 3
х = 7
7 см - длина основания, 7 + 12 = 19 (см) - длины боковых сторон треугольника.
Заметим, что такой треугольник  существует, для его сторон  выполнено неравенство треугольника,
19 см < 19 см + 7 см
7 см < 19 см + 19 см - верно.
ответ: 7 см, 19 см, 19 см.
 
Периметр равнобедренного треугольника равен 45 см, а одна из его сторон больше другой на 12 см.найди
Периметр равнобедренного треугольника равен 45 см, а одна из его сторон больше другой на 12 см.найди
0,0(0 оценок)
Ответ:
nynsikram
nynsikram
06.02.2021 14:36
Общие касательные окружностей различных радиусов являются сторонами угла. Центры окружностей лежат на биссектрисе угла (так как окружности вписаны в угол). Отрезки касательных из одной точки равны, треугольники ATB и CTD равнобедренные, общая биссектриса является высотой, AB⊥TO₂, CD⊥TO₂, AB||CD.

Радиусы O₁A и O₂C перпендикулярны касательной AC, в треугольниках AO₁T и CO₂T угол при вершине T общий, ∠AO₁E=∠CO₂F. △AO₁E~△CO₂F по двум углам.

k=AO₁/CO₂ =12/20 =0,6
O₁E/O₂F =0,6

Через точку H проходит третья общая касательная, GH⊥TO₂. AG=GH, CG=GH (отрезки касательных из одной точки), AG=CG. GH параллельна AB и CD и делит EF в том же отношении, что и AC, то есть пополам, EH=FH.

EH=O₁H +O₁E =12+O₁E
FH=O₂H -O₂F =20-O₂F
12+O₁E = 20-O₂F <=> 0,6 O₂F= 8-O₂F <=> O₂F =8/1,6 =5

EF= 2FH =2(20-5) =30
Окружности радиусов 12 и 20 касаютаются внешним образом. точки а и в лежат на первой окружности точк
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота