Противоположные стороны параллелограмма равны (свойство параллелограмма) => AB = CD, BC = AD,
Периметр равен сумме всех сторон, поскольку противоположные стороны равны, то периметр равен удвоенной сумме смежных сторон => P = 2(AB+BC) = 78см, 2(AB+BC) = 78см, AB+BC = 39см.
BK:KC = 3:7, BK = 3x, KC = 7x, BK + KC = 3x + 7x = 10x = BC.
Биссектрисса параллелограмма отсекает от него равнобедренный треугольник (свойство параллелограмма) => треуг. ABK — равнобедренный, AB = BK. =>
Противоположные стороны параллелограмма равны (свойство параллелограмма) => AB = CD, BC = AD,
Периметр равен сумме всех сторон, поскольку противоположные стороны равны, то периметр равен удвоенной сумме смежных сторон => P = 2(AB+BC) = 78см, 2(AB+BC) = 78см, AB+BC = 39см.
BK:KC = 3:7, BK = 3x, KC = 7x, BK + KC = 3x + 7x = 10x = BC.
Биссектрисса параллелограмма отсекает от него равнобедренный треугольник (свойство параллелограмма) => треуг. ABK — равнобедренный, AB = BK. =>
AB = BK = 3x,
AB + BC = 3x + 10x = 13x = 39см, x = 3см.
AB = 3x = 3 × 3см = 9см,
BC = 10x = 10 × 3см = 30см.
ответ: AB = 9см, BC = 30см, CD = 9см, AD = 30см.
Я не знаю ¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯┐( ∵ )┌┐( ∵ )┌┐( ∵ )┌┐( ∵ )┌┐( ∵ )┌┐( ∵ )┌┐( ∵ )┌┐( ∵ )┌┐( ∵ )┌┐( ∵ )┌┐( ∵ )┌┐( ∵ )┌┐( ∵ )┌┐( ∵ )┌┐( ∵ )┌