Уровень А 251. а) Меньшее основание прямоугольной трапеции равно
10 см, средняя линия – 16 см и один из углов — 60°. Найдите пло-
щадь трапеции. б) Найдите периметр и площадь прямоугольной
трапеции, основания которой равны 8 дм и 12 дм, а один из углов
1359
ой трапеции если: а) ее ос-
1. Равные многоугольники имеют равные площади (аксиома площадей).
Отсюда —
Равные четырёхугольники равновелики (равные по площади).
2. Обратное утверждение : "Если у четырёхугольников равные площади, то они равны".
Рассмотрим квадрат со стороной 6 (ед) и прямоугольник с смежными сторонами, равными 9 (ед) и 4 (ед).
Логично, что эти фигуры не могут быть равными между собой, ведь у равных четырёхугольников равны все соответствующие элементы (у квадрата все стороны равны по 6 (ед), а у прямоугольника стороны попарно равны по 9 (ед) и 4 (ед), тоесть они никак не могут быть равными).
Однако же —
Площадь квадрата = квадрат стороны = (6 (ед))² = 36 (ед²).
Площадь прямоугольника = произведение смежных сторон = 9 (ед)*4 (ед) = 36 (ед²).
Мы доказали, что квадрат и прямоугольник не равны, однако имеют равные площади.
Поэтому обратное утверждение не всегда верно (верно только тогда, когда четырёхугольник равны).
Пусть D, E и F - точки касания вписанной окружности со сторонами треугольника АВС: АС, АВ и ВС соответственно.
Нам дано: АВ=30см, ВF=14см, FC=12см.
Заметим, что ВЕ=ВF=14см, DC=FC=12см, а АЕ=АD как касательные, проведенные из одной точки к окружности.
Тогда АЕ=АВ-ВЕ=30-14=16см, значит АD=16см. DC=FC=12см.
Значит АС=AD+DC=16+12=28см.
Полупериметр треугольника равен: р=(30+26+28):2=42см.
Есть формула для вписанной в треугольник окружности:
r=√[(p-a)(p-b)(p-c)/р], где р - полупериметр, а, b, c - стороны треугольника.
В нашем случае: r=√(12*16*14/42)=√64=8см.
ответ: r=8см.
Или по формуле r=S/p, где S - площадь треугольника.
Площадь найдем по формуле Герона:
S=√[p(p-a)(p-b)(p-c)] или в нашем случае: S=√(42*12*16*14)=√(6*7*2*6*16*2*7)=6*7*2*4=336см².
r=336/42=8см.
ответ: r=8см.