Розвязання: Нехай даний трикутник АВС з основою АС і бічними сторонами АВ=ВСAK, CF - медіани, проведені до бічних сторін бічні сторони трикутника рівні за означенням рівнобедреного трикутника. АВ=ВС, а отже будуть рівні їі їт половини 12ВС=12АB, тобтоCK=AF кути при основі трикутника рівні (властивість рівнобедреного трикутника),тобто кут А=кут С Трикутник АСF=CAK за двома сторонами і кутом між ними відповідноCK=AF, кут А=кут С, АС=СА). З рівності трикутників випливає рівність медіан СF=AKю Доведено
Якщо даний чотирикутник розділити діагоналлю (наприклад АС) на два трикутники, то якщо з"єднати попарно середини сторін (точки М і N, та К і Р) отримаємо середні лінії трикутників, які паралельні третій стороні, тобто діагоналі, а отже паралельні між собою (МN || KP). Якщо провести у чотирикутнику і іншу діагональ (ВД), то аналогічно отримаємо, що МК || NP. Отже отримали чотирикутник МNPK у якому сторони попарно паралельні, як відомо такий чотирикутник - це паралелограм, а у паралелограма протилежні кути - рівні, що й треба було довести.
Розвязання: Нехай даний трикутник АВС з основою АС і бічними сторонами АВ=ВСAK, CF - медіани, проведені до бічних сторін бічні сторони трикутника рівні за означенням рівнобедреного трикутника. АВ=ВС, а отже будуть рівні їі їт половини 12ВС=12АB, тобтоCK=AF кути при основі трикутника рівні (властивість рівнобедреного трикутника),тобто кут А=кут С Трикутник АСF=CAK за двома сторонами і кутом між ними відповідноCK=AF, кут А=кут С, АС=СА). З рівності трикутників випливає рівність медіан СF=AKю Доведено
Якщо провести у чотирикутнику і іншу діагональ (ВД), то аналогічно отримаємо, що МК || NP.
Отже отримали чотирикутник МNPK у якому сторони попарно паралельні, як відомо такий чотирикутник - це паралелограм, а у паралелограма протилежні кути - рівні, що й треба було довести.