1. CD = AB = 12 см как противоположные стороны параллелограмма. Высота ВН делит CD пополам, значит CH = HD = CD/2 = 12/2 = 6 см
ΔСВН прямоугольный с углом 30°, значит гипотенуза в два раза больше катета, лежащего напротив угла в 30°. СВ = 2СН = 12 см. Pabcd = (AB + BC)·2 = (12 + 12)·2 = 48 см
2. Противолежащие углы параллелограмма равны, значит углы А и С равны, значит равны и их половинки. ∠ВМА = ∠МАК как накрест лежащие при пересечении ВС║AD секущей АМ. ∠ВАМ = ∠МАК так как АМ биссектриса, ⇒ ∠ВМА = ∠ВАМ и значит ΔВАМ равнобедренный. ВА = ВМ = 6 см
∠ВМА = ∠МСК, а это соответственные углы при пересечении прямых АМ и СК секущей ВС, значит АМ║СК, СМ║АК так как лежат на противоположных сторонах параллелограмма, значит АМСК - параллелограмм, ⇒ МС = АК = 4 см
ВС = 6 + 4 = 10 см
Pabcd = (AB + BC)·2 = (6 + 10)·2 = 32 см
3. ∠BOD - внешний угол треугольника ВОК, равен сумме двух внутренних, не смежных с ним. ∠ОВК = 140° - 110° = 30°
В треугольнике АВЕ: <A=180°-50°-70°=60° (углы треугольника в сумме равны 180°). Тогда <B трапеции равен 180°-60°=120°(так как <A и <B - внутренние односторонние углы при параллельных АD и ВС и секущей АВ). <BED=180-<BEA или <BED=180°-50°=130°(это смежные углы, в сумме равны 180°). Тогда в параллелограмме ВСDЕ <C=130° (противоположные углы параллелограмма равны). Тогда <D=180°-<C или <D=180°-130°=50°(углы параллелограмма, прилежащие к одной стороне, в сумме равны 180°). ответ: <A=60°, <B=120°, <C=130° и <D=50°.
Высота ВН делит CD пополам, значит
CH = HD = CD/2 = 12/2 = 6 см
ΔСВН прямоугольный с углом 30°, значит гипотенуза в два раза больше катета, лежащего напротив угла в 30°.
СВ = 2СН = 12 см.
Pabcd = (AB + BC)·2 = (12 + 12)·2 = 48 см
2. Противолежащие углы параллелограмма равны, значит углы А и С равны, значит равны и их половинки.
∠ВМА = ∠МАК как накрест лежащие при пересечении ВС║AD секущей АМ.
∠ВАМ = ∠МАК так как АМ биссектриса, ⇒
∠ВМА = ∠ВАМ и значит ΔВАМ равнобедренный.
ВА = ВМ = 6 см
∠ВМА = ∠МСК, а это соответственные углы при пересечении прямых АМ и СК секущей ВС, значит
АМ║СК,
СМ║АК так как лежат на противоположных сторонах параллелограмма, значит
АМСК - параллелограмм, ⇒
МС = АК = 4 см
ВС = 6 + 4 = 10 см
Pabcd = (AB + BC)·2 = (6 + 10)·2 = 32 см
3. ∠BOD - внешний угол треугольника ВОК, равен сумме двух внутренних, не смежных с ним.
∠ОВК = 140° - 110° = 30°
ΔВМС: ∠ВМС = 90°, ∠МВС = 30°, ⇒ ∠ВСМ = 90° - 30° = 60° (сумма острых углов прямоугольного треугольника равна 90°)
Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠CDA = 180° - ∠BCD = 180° - 60° = 120°
Противолежащие углы параллелограмма равны.
ответ: 60°, 60°, 120°, 120°
Тогда <D=180°-<C или <D=180°-130°=50°(углы параллелограмма, прилежащие к одной стороне, в сумме равны 180°).
ответ: <A=60°, <B=120°, <C=130° и <D=50°.