Удивительно, но эта такая сложная по формулировке задача решается в одно действие. Угол между высотами, выходящими (например, тут полный произвол в обозначениях) из вершин углов A и B; равен 180 - С; Это можно просто сосчитать, как 180 - (90 - A) - (90 - B) = A + B = 180 - C; а можно просто заметить, что четырехугольник, образованный сторонами угла С и высотами (ну кусочками), выходящими из углов A и B, очевидно является вписанным (да даже еще проще - в нем два угла прямых). а можно просто заметить, что у угла С и угла между высотами СТОРОНЫ ПЕРПЕНДИКУЛЯРНЫ. :) Поэтому в обоих треугольниках напротив общей их стороны AB лежат углы, синусы которых равны. Поэтому (по теореме синусов) равны радиусы окружностей, описанных вокруг этих треугольников.
В прямоугольнике диагонали равны и точкой пересечения делятся пополам =>
Треугольник РОК равносторонний, так как
ОК=ОР и ∠ РОК = 60°). => ОР = ОК = РК = 2 ед.
ОН=ОР = 2 ед. РН = 4 ед.
Скалярное произведение векторов можно записать так:
a·b=|a|·|b|c·сosα.
Определение: "Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором".
Совместим начала векторов ОР и РК в точке О. Тогда угол между векторами ОР и ОК' (вектора ОК и ОК' равны) равен 120°.
Векторное произведение указанных в условии векторов:
Угол между высотами, выходящими (например, тут полный произвол в обозначениях) из вершин углов A и B; равен 180 - С;
Это можно просто сосчитать, как 180 - (90 - A) - (90 - B) = A + B = 180 - C;
а можно просто заметить, что четырехугольник, образованный сторонами угла С и высотами (ну кусочками), выходящими из углов A и B, очевидно является вписанным (да даже еще проще - в нем два угла прямых).
а можно просто заметить, что у угла С и угла между высотами СТОРОНЫ ПЕРПЕНДИКУЛЯРНЫ. :)
Поэтому в обоих треугольниках напротив общей их стороны AB лежат углы, синусы которых равны.
Поэтому (по теореме синусов) равны радиусы окружностей, описанных вокруг этих треугольников.
(МН·РН) = 4 ед.
(ОР·РК) = -2 ед.
Объяснение:
В прямоугольнике противоположные стороны равны =>
вектора МН = РК.
∠ РОК = 180° - 120° = 60° ( смежные углы).
В прямоугольнике диагонали равны и точкой пересечения делятся пополам =>
Треугольник РОК равносторонний, так как
ОК=ОР и ∠ РОК = 60°). => ОР = ОК = РК = 2 ед.
ОН=ОР = 2 ед. РН = 4 ед.
Скалярное произведение векторов можно записать так:
a·b=|a|·|b|c·сosα.
Определение: "Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором".
Совместим начала векторов ОР и РК в точке О. Тогда угол между векторами ОР и ОК' (вектора ОК и ОК' равны) равен 120°.
Векторное произведение указанных в условии векторов:
(МН·РН) = (РК·РН) = 2·4·Cos60° = 4 ед.
(ОР·РК) = 2·2·Cos120° = -2 ед.