Установіть відповідність між умовами задач (1-4) і відповідями до них (А-Д).
1 У трикутнику ABC знайдіть кут А,
А 40°
якщо 2C = 90°, ZA:ZB = 4:5
Б 35°
2 У трикутнику ABC знайдіть кут В,
якщо 2C = 90°, ZA-Z B = 20°
В 80°
зу трикутнику ABC знайдіть менший
г 30°
кут, якщо ZA:ZB:2C = 3:7:8
OB = R = 5 см
АС - хорда
OB ⊥ AC
BD = 2 см
Найти АС
Решение
ОВ = 5 см как радиус окружности
1) Найдём OD
OD = OD - BD = 5см - 2 см = 3 см
OD = 3 см
2) ΔODC - прямоугольный, т.к. по условию OB ⊥ AC, поэтомуможно применить теорему Пифагора.
OD² + DC² = OC²
DC² = OC² - OD²
DC² = 5² - 3² = 25 - 9 = 16
DC = √16 = 4 см
DC = 4 см
3)ΔADO = ΔODC
∠ADO = ∠ODC = 90°
OA = OC = R = 5 см
OD - общая
Из равенства треугольников ΔADO = ΔODC следует равенство
DC = AD = 4 см
А теперь находим АС
АС = 2*4см = 8 см
ответ: 8 см
Площадь полной поверхности круглого конуса равна сумме площадей боковой поверхности конуса и его основания.
Основание конуса - круг и его площадь вычисляется по формуле площади круга:
S= π r²
Площадь боковой поверхности круглого конуса равна произведению половины окружности основания (C) на образующую (l)
S=1/2 C l=π r l
Полная площадь поверхности конуса
S=π r l+π r² = π r (r+ l)
Для решения задачи нужно вычислить длины радиуса r и образующей l.
Площадь сечения конуса - это площадь двух прямоугольных треугольников с равными катетами
S сечения =rh:2+ rh:2=2rh:2=rh
r =S:h=0,6:1,2=0,5 см
Образующую найдем из треугольника, образованного высотой и радиусом -катеты, и образующей l - гипотенуза.
l²=r²+h²=0,25 см +1,44 =1,69 см²
l=√1,69=1,3 см
S= π 0,5 (0,5+1,3)= 1,8 π cм²