Конус. Образующая равностороннего конуса наклонена к основанию под углом 60 градусов. Образующая равна двум радиусам: L = 2Rk. Радиус его основания равен: Rk = H/√3. Площадь основания Sok = πRk² = πH²/3. Площадь Sбок боковой поверхности равна: Sбок = πRL = π(H/√3)*(2H/√3) = (2/3)πH²/3. Площадь S полной поверхности равна: S = Sok + Sбок = πRL = πH²/3 + (2/3)πH²/3 = πH².
Цилиндр. Радиус его основания равен: Rц = H/2. Площадь основания Soц = πRц² = πH²/4. Площадь Sбок боковой поверхности равна: Sбок = 2πRцH = 2π(H/2)*H = πH². Площадь S полной поверхности равна: S = 2Soц + Sбок = πH²/2 + πH² = (3/2)πH².
ответ: отношение площадей их полных поверхностей равно 1:(1,5).
Образующая равностороннего конуса наклонена к основанию под углом 60 градусов. Образующая равна двум радиусам: L = 2Rk.
Радиус его основания равен: Rk = H/√3.
Площадь основания Sok = πRk² = πH²/3.
Площадь Sбок боковой поверхности равна:
Sбок = πRL = π(H/√3)*(2H/√3) = (2/3)πH²/3.
Площадь S полной поверхности равна:
S = Sok + Sбок = πRL = πH²/3 + (2/3)πH²/3 = πH².
Цилиндр.
Радиус его основания равен: Rц = H/2.
Площадь основания Soц = πRц² = πH²/4.
Площадь Sбок боковой поверхности равна:
Sбок = 2πRцH = 2π(H/2)*H = πH².
Площадь S полной поверхности равна:
S = 2Soц + Sбок = πH²/2 + πH² = (3/2)πH².
ответ: отношение площадей их полных поверхностей равно 1:(1,5).
В ∆ АВС ∠ВСА=90°, ∠САК=15°
Высота СН=1. Найти АВ.
-----------
СН - высота ∆ ВСА и равна 1 по условию.
Отложим на продолжении ВС отрезок СК=ВС.
Соединим К и А.
СК=СВ, угол КСА=углу ВСА=90° (смежный).
В прямоугольных ∆ АВС и ∆ АКС катеты СК=СВ по построению, АС - общий.
∆ АСВ=∆ АСК по двум катетам =>
АК=АВ,
Треугольник АВК равнобедренный.
Угол КАС=углу САВ, следовательно, угол КАВ=2•15°=30°
Опустим перпедникуляр КМ на АВ
В прямоугольном ∆ ВКМ отрезки КС=ВС по построению. =>
С - середина отрезка ВК.
СН высота и перпендикулярна АВ, отрезок КМ перпендикулярен АВ по построению, поэтому СН║КМ, следовательно, СН- средняя линия ∆ ВКМ.=>
КМ=2СН=2.
∠КАМ=∠САВ+∠САК=30°
В прямоугольном ∆ КАМ катет КМ противолежит углу 30° и равен половине гипотенузы ( свойство).
АК=2КМ=4 ед. длины.
Гипотенуза АВ=АК=4 ед. длины - это ответ