1. Расстояние от точки К до прямой МР будет являться перпендикуляр КО, опущенный из вершины К на сторону МР. Тогда в прямоугольном треугольнике РОК сторона КР=2КО (по условию). В прямоугольном треугольнике РОК катет КО равный половине гипотенузы КР лежит против угла КРМ равного 30 градусов.
2. Расстоянием от прямой b до стороны КР будет являться перпендикуляр МН, опущенный из вершины М к стороне КР. Тогда в прямоугольном треугольнике РМН против угла НРМ (это тот же угол КРМ) равного 30 градусов лежит катет МН равный половине гипотенузы МР. МН=16/2=8
Доказать: треугольник КМР= треугольнику KPN Доказательство:треугольник KMP= треугольнику КРN по первому признаку равенства треугольников (по двум сторонам и углу между ними), так как KM=KN, угол МКР= углу PKN, сторона КР общая.
Дано: ВС=АД, АВ=СД, АС - общая сторона ать: треугольники АВС и АСД равны.
Док-во: треугольники ABC и АСД равны по третьему признаку равенства треугольников ( по трем сторонам), так как ВС=АД, АВ=СД, АС - общая сторона
Дано: углы АСД и ДСВ равны, углы СДА и СДВ равны, СД - общая сторона Доказать: Треугольники АСД и СДВ
равны Доказательство:треугольники АСД и СДВ равны по второму признаку равенства треугольников (по стороне и двум прилежащим к ней углам), так как углы АСД и ДСВ равны, углы СДА и СДВ равны, СД - общая сторона.
1. Расстояние от точки К до прямой МР будет являться перпендикуляр КО, опущенный из вершины К на сторону МР. Тогда в прямоугольном треугольнике РОК сторона КР=2КО (по условию). В прямоугольном треугольнике РОК катет КО равный половине гипотенузы КР лежит против угла КРМ равного 30 градусов.
2. Расстоянием от прямой b до стороны КР будет являться перпендикуляр МН, опущенный из вершины М к стороне КР. Тогда в прямоугольном треугольнике РМН против угла НРМ (это тот же угол КРМ) равного 30 градусов лежит катет МН равный половине гипотенузы МР. МН=16/2=8
Дано: KM=KN, угол МКР= углу PKN, сторона КР общая
Доказать: треугольник КМР= треугольнику KPN Доказательство:треугольник KMP= треугольнику КРN по первому признаку равенства треугольников (по двум сторонам и углу между ними), так как KM=KN, угол МКР= углу PKN, сторона КР общая.
Дано: ВС=АД, АВ=СД, АС - общая сторона ать: треугольники АВС и АСД равны.
Док-во: треугольники ABC и АСД равны по третьему признаку равенства треугольников ( по трем сторонам), так как ВС=АД, АВ=СД, АС - общая сторона
Дано: углы АСД и ДСВ равны, углы СДА и СДВ равны, СД - общая сторона Доказать: Треугольники АСД и СДВ
равны Доказательство:треугольники АСД и СДВ равны по второму признаку равенства треугольников (по стороне и двум прилежащим к ней углам), так как углы АСД и ДСВ равны, углы СДА и СДВ равны, СД - общая сторона.