1) Докажем по определению: "Параллелограммом называется четырехугольник у которого противоположные стороны попарно параллельны".
по аксиоме любые три точки всегда лежат в одной плоскости. Значит четвертая точка не лежит в данной плоскости. Если все 4 точки соединить между собой, то получится треугольная пирамида (тетраэдр) рассмотрим ΔАВС: Если Е и F - середины сторон АВ и ВС, то EF - средняя линия треугольника (по определению), следовательно EF || AC. аналогично для других треугольников: KM - средняя линия треугольника ADC значит КM || AC Если EF || AC и КM || AC, то EF || KM (закон транзитивности)
EK - средняя линия треугольника ADB, значит EK || BD MF- средняя линия треугольника CDB, значит MF || BD Если EK || BD и MF || BD, то EK || MF
Итак, EF || KM и EK || MF, следовательно EFKM-параллелограмм (по определению) - ч.т.д.
2) средняя линия треугольника равна половине основания KE=MF=BD/2=8/2=4 см KM=EF=AC/2=6/2=3 см Периметр (Р) - сумма длин всех сторон KE+MF+KM+EF=4+4+3+3=14 см Отв: 14 см
"Параллелограммом называется четырехугольник у которого противоположные стороны попарно параллельны".
по аксиоме любые три точки всегда лежат в одной плоскости.
Значит четвертая точка не лежит в данной плоскости. Если все 4 точки соединить между собой, то получится треугольная пирамида (тетраэдр)
рассмотрим ΔАВС:
Если Е и F - середины сторон АВ и ВС, то EF - средняя линия треугольника (по определению), следовательно EF || AC.
аналогично для других треугольников:
KM - средняя линия треугольника ADC значит КM || AC
Если EF || AC и КM || AC, то EF || KM (закон транзитивности)
EK - средняя линия треугольника ADB, значит EK || BD
MF- средняя линия треугольника CDB, значит MF || BD
Если EK || BD и MF || BD, то EK || MF
Итак, EF || KM и EK || MF, следовательно EFKM-параллелограмм (по определению) - ч.т.д.
2) средняя линия треугольника равна половине основания
KE=MF=BD/2=8/2=4 см
KM=EF=AC/2=6/2=3 см
Периметр (Р) - сумма длин всех сторон
KE+MF+KM+EF=4+4+3+3=14 см
Отв: 14 см
16 см
Объяснение:
1) Довжини дотичних, проведених до кола з однієї точки, рівні.
Вершини трапеції можна розглядати як ті самі точки, з яких проведені дотичні, які є в даному випадку сторонами трапеції.
2) Отже, на меншій підставі точка дотику відстоїть від вершини на 2 см, а на більшій підставі - на 32 см.
3) Тепер, якщо з вершини меншого підстави опустити перпендикуляр на більшу основу, то вийде прямокутний трикутник:
- його гіпотенуза = 32 + 2 = 34 см - це бічна сторона трапеції;
- горизонтальний катет (різниця між нижньою і верхньою точками торкання) = 32-2 = 30 см;
- вертикальний катет-висота Н, яку треба знайти:
Н = √ (34² - 30²) = √(1156 -900) = √ 256 = 16 см
Відповідь: 16 см
1) Длины касательных, проведённых к окружности из одной точки, равны.
Вершины трапеции можно рассматривать как те самые точки, из которых проведены касательные, являющиеся в данном случае сторонами трапеции.
2) Следовательно, на меньшем основании точка касания отстоит от вершины на 2 см, а на большем основании - на 32 см.
3) Теперь, если из вершины меньшего основания опустить перпендикуляр на большее основание, то получится прямоугольный треугольник:
- его гипотенуза = 32 + 2 = 34 см - боковая сторона;
- горизонтальный катет (разность между нижней и верхней точками касания) = 32 - 2 = 30 см;
- вертикальный катет - высота Н, которую надо найти:
Н = √ (34² - 30²) = √(1156 -900) = √ 256 = 16 см