Решения этих задач опирается на свойства углов параллелограмма:
противоположные углы равны;
сумма соседних углов 180°.
Исходя из этого решаем:
1). если данная сумма не равна 180°, то эти углы противоположны, следовательно равны - 120/2=60° - одна пара противоположных углов, 180-60=120° - вторая пара противоположных углов;
2). если один угол меньше другого, то эти углы соседние, следовательно - один угол Х, второй угол (Х-40), их сумма -
Х+(Х-40)=180, 2Х=140, Х=70° - одна пара углов, 180-70=110° - вторая пара углов.
3). один угол - Х, второй угол - 3Х, сумма - Х+3Х=180, Х=45° - одна пара углов, 180-45=135° - вторая пара углов.
В равнобедренной трапеции высота, опущенная из вершины на большее основание, делит его на два отрезка, один из которых равен полусумме оснований, другой — полуразности оснований.
Можно, не будучи знакомым с этим свойством равнобедренной трапеции, самостоятельно прийти к этому выводу, опустив две высоты из вершин тупых углов трапеции и сделав необходимые расчеты.
Средняя линия равна 16, следовательно, сумма оснований равна ВС+АD=16·2=32 Большее основание равно AD=32-BC=32-6=26 Отрезок НD- меньший из двух, на которые высота делит основание АД. Полуразность оснований равна HD=(26-6):2=10 ответ: Отрезок HD=10
1) 60,120,60,120
2) 70,110,70,110
3) 45,135,45,135
Объяснение:
Решения этих задач опирается на свойства углов параллелограмма:
противоположные углы равны;
сумма соседних углов 180°.
Исходя из этого решаем:
1). если данная сумма не равна 180°, то эти углы противоположны, следовательно равны - 120/2=60° - одна пара противоположных углов, 180-60=120° - вторая пара противоположных углов;
2). если один угол меньше другого, то эти углы соседние, следовательно - один угол Х, второй угол (Х-40), их сумма -
Х+(Х-40)=180, 2Х=140, Х=70° - одна пара углов, 180-70=110° - вторая пара углов.
3). один угол - Х, второй угол - 3Х, сумма - Х+3Х=180, Х=45° - одна пара углов, 180-45=135° - вторая пара углов.
В равнобедренной трапеции высота, опущенная из вершины на большее основание, делит его на два отрезка, один из которых равен полусумме оснований, другой — полуразности оснований.
Можно, не будучи знакомым с этим свойством равнобедренной трапеции, самостоятельно прийти к этому выводу, опустив две высоты из вершин тупых углов трапеции и сделав необходимые расчеты.
Средняя линия равна 16, следовательно, сумма оснований равна
ВС+АD=16·2=32
Большее основание равно
AD=32-BC=32-6=26
Отрезок НD- меньший из двух, на которые высота делит основание АД.
Полуразность оснований равна
HD=(26-6):2=10
ответ: Отрезок HD=10