Установите соответствие: Радиус окружности описанной около правильного треугольника, равен 4√3 см. а)Найдите радиус окружности, вписанной в этот же треугольник.
b) Найдите периметр данного правильного треугольника.
с)Найдите площадь данного правильного треугольника.
d)Найдите сторону квадрата,
вписанного в данную окружность.
На произвольной прямой m отложим отрезок, равный длине катета АС.
Обозначим его концы А и С.
На сторонах заданного угла А циркулем радиуса=АС с центром в т.А сделаем насечки. Обозначим их О и М.
Соединим О и М.
Из т. А построенного на m катета проведем тем же раствором циркуля полуокружность.
Циркулем измерим ОМ и из т.С отложим полуокружность до пересечения с первой в т.К.
АС=АМ, АК=АО, отрезок СК равен отрезку ОМ, ⇒ ∆ АКС=∆ АОМ. Следовательно, угол КАС равен заданному.
Катет и прилежащий к нему угол построены.
На равном расстоянии по обе стороны от С отметим на прямой m т.1 и т.2.
Из этих точек, как из центров, начертим полуокружности так, чтобы они пересеклись по обе стороны от прямой m.
Точки пересечения соединим. Построен перпендикуляр к прямой m через т. С ( это стандартный построения перпендикуляра, и он наверняка Вам знаком).
Точку пересечения перпендикуляра с другой стороной угла А обозначим В.
Искомый треугольник АВС по катету АС и прилежащему углу А построен.
Для доказательства используем одно из свойств ромба: его диагонали пересекаются под прямым углом. (Здесь даже не важно под каким углом они пересекаются).
Поскольку прямая а и ВД параллельны, а СД пересекает одну из параллельных прямых, то она обязательно пересечет и вторую прямую, т.е. прямую а.
Есть теорема:
Пусть три прямые лежат в некоторой плоскости. Если прямая пересекает одну из параллельных прямых, то она пересекает и вторую прямую.
Что и требовалось для доказательства.