Составить уравнение высоты, проведенной из вершины С.
Высота СД - это перпендикуляр к прямой АВ.
Составим уравнение прямой АВ.
Вектор АВ = (5-(-7); -3-2) = (12; -5).
Уравнение АВ:
(x + 7)/12 = (y – 2)/(-5) в каноническом виде или
5х + 12у + 11 = 0 в общем виде.
Перпендикулярная прямая в общем виде Ах + Ву + С = 0 имеет коэффициенты по сравнению с АВ, равные В и -А (это из условия, что их скалярное произведение равно нулю): 12х - 5у + С = 0.
Для определения слагаемого С подставим координаты точки С:
Давай предположим что у нас есть трапеция ABCD. AB и CD боковые, BC и AD основания. Нам известно что BC + AD = 44. Пусть тогда угол А = 60°. Теперь давай проведем перпендикуляр (высоту, отрезок) от точки B к стороне AD. Получаем треугольник ABE ( E это точка куда опущен перпендикуляр.) По свойству сумма углов треугольника равна 180°. То, если угол BEA равен 90°, а угол А равен 60°, следовательно угол АВЕ равен 30°. По свойству напротив угла в 30° лежит отрезок равный половине гипотенузы. Получается если АВ это гипотенуза и равна она 24 см, то АЕ будет равен половине АВ, т.е. АЕ=АВ : 2=24:2= 12 см. Сторона АЕ равна 12 см. Следовательно если мы опустим из точки С перпендикуляр к стороне АD то будет то же самое как с другим треугольником. Т.е. AE=DF=12 см. Если ВС+АD=44 см, а АЕ=DF=12 см, то получаем уравнение
Даны вершины А(-7;2) B(5;-3) C(8:1) треугольника АBC.
Составить уравнение высоты, проведенной из вершины С.
Высота СД - это перпендикуляр к прямой АВ.
Составим уравнение прямой АВ.
Вектор АВ = (5-(-7); -3-2) = (12; -5).
Уравнение АВ:
(x + 7)/12 = (y – 2)/(-5) в каноническом виде или
5х + 12у + 11 = 0 в общем виде.
Перпендикулярная прямая в общем виде Ах + Ву + С = 0 имеет коэффициенты по сравнению с АВ, равные В и -А (это из условия, что их скалярное произведение равно нулю): 12х - 5у + С = 0.
Для определения слагаемого С подставим координаты точки С:
12*8 - 5*1 + С = 0, отсюда С = -96 + 5 = -91.
Получаем уравнение общего вида:
СD = 12х - 5у - 91 = 0.
Давай предположим что у нас есть трапеция
ABCD. AB и CD боковые, BC и AD основания. Нам известно что BC + AD = 44. Пусть тогда угол А = 60°. Теперь давай проведем перпендикуляр (высоту, отрезок) от точки B к стороне AD. Получаем треугольник ABE ( E это точка куда опущен перпендикуляр.) По свойству сумма углов треугольника равна 180°. То, если угол BEA равен 90°, а угол А равен 60°, следовательно угол АВЕ равен 30°. По свойству напротив угла в 30° лежит отрезок равный половине гипотенузы. Получается если АВ это гипотенуза и равна она 24 см, то АЕ будет равен половине АВ, т.е. АЕ=АВ : 2=24:2= 12 см. Сторона АЕ равна 12 см. Следовательно если мы опустим из точки С перпендикуляр к стороне АD то будет то же самое как с другим треугольником. Т.е. AE=DF=12 см. Если ВС+АD=44 см, а АЕ=DF=12 см, то получаем уравнение
2 × 12 + 2 × Х = 44
24+2Х=44
2Х=44-24
2Х=20
Х=20:2
Х=10
Значит ВС равен 10 см. Тогда АD=44 - 10= 34 см.
ответ: АD = 34 см, ВС = 10 см
Извини, чертеж получился корявым, но я все подробно объяснил.