Из правильного треугольника АВС: из теоремы Пифагора: высота ВК равна 3 корня из 2. Угол ОАК - это угол между плоскостью АОС и основанием. Поскольку угол ОАК = 30 градусов, то катет ОК равен гипотенузы ОА как катет, который лежит против угла 30 градусов. ОК = ОА/2. Пускай ОК = х, тогда ОА = 2х. Из прямоугольного треугольника ОАК: за теоремой Пифагора: OA^2 = OK^2 + AK^2, 4x^2 = 9 - x^2, 3x^2 = 9, x^2 = 3, x = корень из 3. OK = корень из 3. Объем призмы равен площади основания умножить на высоту: S = So*H = S(ABC)*OK = BK*AC/2*OK = 9 корней из 6.
Это верно для произвольного 4 угольника (трапеция частный случай):
Проведем диагональ x.
Запишем неравенство треугольника abx: a+b>x ;
Запишем неравенство треугольника cdx : c+x>d ;
Сложим эти неравенства почленно: a+b+c+x>x+d .
Откуда: a+b+c>d .
Таким образом , любая сторона четырехугольника меньше суммы трех других его сторон , что ,соответственно, справедливо и для трапеции.
Ну наверное самые любознательные спросят :,,А верно ли это для произвольного многоугольника?'' Таки да это так :) . Но вот как это доказать? Пусть эта задача останется вам.Дам небольшую подсказку : примените похожий метод как для 4 угольника ,используя метод математической индукции.
Это верно для произвольного 4 угольника (трапеция частный случай):
Проведем диагональ x.
Запишем неравенство треугольника abx: a+b>x ;
Запишем неравенство треугольника cdx : c+x>d ;
Сложим эти неравенства почленно: a+b+c+x>x+d .
Откуда: a+b+c>d .
Таким образом , любая сторона четырехугольника меньше суммы трех других его сторон , что ,соответственно, справедливо и для трапеции.
Ну наверное самые любознательные спросят :,,А верно ли это для произвольного многоугольника?'' Таки да это так :) . Но вот как это доказать? Пусть эта задача останется вам.Дам небольшую подсказку : примените похожий метод как для 4 угольника ,используя метод математической индукции.