Тетраэдр-пирамида у которого все ребра равны, тетраэдр KABC, K-вершина, АВ=ВС=АС=КА=КВ=КС=10, проводим высоту ВH на AC, ВH=Медиане=Биссектрисе, О-центр пирамиды - точка пересечения медиан=высот=биссектрис, BH=AB* корень 3/2 = 10*, корень 3/2 = 5* корень 3, медианы в точке пересечения делятся в отношении 2/1 начиная от вершины, ВО=2/3 ВH=2/3* 5* корень 3=10* корень 3/3 Треугольник КОВ прямоугольный, КО - высота тетраэдра= корень (КВ в квадрате- ВО в квадрате) = (100-300/9) = 10* корень 6/3 .
В равнобедренном треугольнике две равные стороны называются боковыми, а третья - основанием треугольника. Точка пересечения равных сторон — вершина равнобедренного треугольника. Угол между одинаковыми сторонами считается углом при вершине, а два других — углами при основании треугольника. Являются доказанными такие свойства равнобедренного треугольника: - равенство углов при основании, - совпадение проведенных из вершины биссектрисы, медианы и высоты с осью симметрии треугольника, - равенство между собой двух других биссектрис (медиан, высот), - пересечение биссектрис (медиан, высот), проведенных из углов при основании, в точке, лежащей на оси симметрии. Наличие одного из этих признаков является доказательством того, что треугольник равнобедренный.
Тетраэдр-пирамида у которого все ребра равны, тетраэдр KABC, K-вершина, АВ=ВС=АС=КА=КВ=КС=10, проводим высоту ВH на AC, ВH=Медиане=Биссектрисе, О-центр пирамиды - точка пересечения медиан=высот=биссектрис, BH=AB* корень 3/2 = 10*, корень 3/2 = 5* корень 3, медианы в точке пересечения делятся в отношении 2/1 начиная от вершины, ВО=2/3 ВH=2/3* 5* корень 3=10* корень 3/3 Треугольник КОВ прямоугольный, КО - высота тетраэдра= корень (КВ в квадрате- ВО в квадрате) = (100-300/9) = 10* корень 6/3 .
Неуверенна, но вроде так.
Являются доказанными такие свойства равнобедренного треугольника:
- равенство углов при основании,
- совпадение проведенных из вершины биссектрисы, медианы и высоты с осью симметрии треугольника,
- равенство между собой двух других биссектрис (медиан, высот),
- пересечение биссектрис (медиан, высот), проведенных из углов при основании, в точке, лежащей на оси симметрии.
Наличие одного из этих признаков является доказательством того, что треугольник равнобедренный.