Утрикутнику одна з його сторін дорівнює 28см, а інша сторона ділиться точкою дотику, вписаного в нього кола, на відрізки 12см і 14см. знайдіть периметр трикутника
В прямоугольном треугольнике АВС найти катет АС и высоту CD , если проекции катетов на гипотенузу АВ равны AD=25см, BD=4см.
Объяснение:
Если в прямоугольном треугольнике опущена высота на гипотенузу, то каждый из катетов есть среднее пропорциональное между всей гипотенузой и его проекцией на гипотенузу: АС=√(АВ*АD),
AC=√( (25+4)*25)=5√29 (см)
Если в прямоугольном треугольнике опущена высота на гипотенузу, то высота является средним пропорциональным между проекциями катетов на гипотенузу : CD=√AD*BD ,CD=√(25*4)=10 (см).
800π см³
Объяснение:
Дано:
Цилиндр:
AB=12см
ОК=8см
<О1КО=45°
V=?
ОА=ОВ=R, радиусы.
∆АОВ- равнобедренный треугольник
ОК- высота, медиана и биссектрисса равнобедренного треугольника ∆АОВ
АК=АВ.
АК=АВ/2=12/2=6см
∆ОАК- прямоугольный треугольник
По теореме Пифагора
ОА=√(ОК²+АК²)=√(8²+6²)=√(64+36)=
=√100=10см. Радиус цилиндра.
Sосн=ОА²*π=10²π=100π см².
∆О1ОК- прямоугольный треугольник
<О1ОК=90°
<ОКО1=45°
<ОО1К=45°
∆О1ОК- равнобедренный треугольник, (углы при основании равны)
О1О=ОК=8см высота цилиндра.
V=Sосн*О1О=100π*8=800π см³
В прямоугольном треугольнике АВС найти катет АС и высоту CD , если проекции катетов на гипотенузу АВ равны AD=25см, BD=4см.
Объяснение:
Если в прямоугольном треугольнике опущена высота на гипотенузу, то каждый из катетов есть среднее пропорциональное между всей гипотенузой и его проекцией на гипотенузу: АС=√(АВ*АD),
AC=√( (25+4)*25)=5√29 (см)
Если в прямоугольном треугольнике опущена высота на гипотенузу, то высота является средним пропорциональным между проекциями катетов на гипотенузу : CD=√AD*BD ,CD=√(25*4)=10 (см).