Свойство пересекающихся хорд: Произведения длин отрезков, на которые разбита точкой пересечения каждая из хорд, равны. Пусть это будут хорды АВ и СМ, Е -точка их пересечения. АЕ=ВЕ, СЕ=3, МЕ=12 Сделаем рисунок. Соединим А и М, С и В. Рассмотрим получившиеся треугольники АЕМ и ВЕС Они имеют два угла, опирающихся на одну и ту же дугу, следовательно, эти углы равны. Третий их угол также равен. ⇒ Треугольники АЕМ и ВЕС подобны Из подобия следует отношение: АЕ:СЕ=МЕ:ВЕ АЕ*ВЕ=СЕ*МЕ Так как АЕ=ВЕ, то АЕ²=3*12=36 АЕ=√36=6, АВ=2 АЕ=12 см
30,5 см^2
Объяснение:
Мне кажется,что это так решается:
Нужно найти Sокружности - S прямоугольника (АBCD)
1) S прямоугольника= 6*8 = 48 (см^2)
2) Проведём диагональ AC и рассмотрим треугольник АВС, у нас известны две стороны 8 и 6 см ,найдём третью сторону AC по т. Пифагора
AC^2= 8^2 + 6^2 = 64+36=100
AC=√100=10(см)
3)O- центр окружности
OC=AO=R=10/2=5 (см) R-радиус
4)S окружности = πR^2= π5^2 = 25π
π=3,14
S окружности = 25*3,14=78,5(см^2)
5)S окружности - S прямоугольника = 78,5-48=30,5 (см^2)
Повторюсь мне кажется,что это так решается,но всё может быть,если вы считаете, что я что-то не так решила,напишите))
Произведения длин отрезков, на которые разбита точкой пересечения каждая из хорд, равны.
Пусть это будут хорды АВ и СМ, Е -точка их пересечения.
АЕ=ВЕ, СЕ=3, МЕ=12
Сделаем рисунок. Соединим А и М, С и В.
Рассмотрим получившиеся треугольники АЕМ и ВЕС
Они имеют два угла, опирающихся на одну и ту же дугу, следовательно, эти углы равны. Третий их угол также равен. ⇒
Треугольники АЕМ и ВЕС подобны
Из подобия следует отношение:
АЕ:СЕ=МЕ:ВЕ
АЕ*ВЕ=СЕ*МЕ
Так как АЕ=ВЕ, то
АЕ²=3*12=36
АЕ=√36=6,
АВ=2 АЕ=12 см