Раз диагональное сечение - прямоугольный треугольник, то есть половина квадрата со стороной, равной боковому ребру, и основание этого сечения - диагональ (тоже) квадрата в основании пирамиды, то
1. Боковое ребро равно стороне основания (то есть все ребра пирамиды равны между собой)
2. Площадь основания равна удвоенной площади диагонального сечения, то есть 32*2 = 64, соответственно, сторона равна 8.
Итак, все ребра пирамиды равны 8.
Боковая поверхность состоит из четырех правильных треугольников со стороной, равной 8. Площадь одного такого треугольника 8^2*корень(3)/4, а вся боковая поверхность имеет площадь 8^2*корень(3) = 64*корень(3);
1) М-середина отрезка АС, значит М((-2+8)/2;(0-4)/2;(1+9)/2), М(3;-2;5), вектор ВМ имеет координаты: (3+1;-2--2;5-3) или (4;-4;2)
2) Пусть средняя линия MN. N- середина ВС, аналогично пункту 1 находим координаты точки N: ((-1+8)/2;(2-4)/2; (3+9)/2) или (3,5;-1;6). Тогда длина отрезка MN равна корню квадратному из выражения (3,5-3)2+(-1+2)2+(6-5)2 (тут каждая скобка в квадрате!), равно корню квадратному из 2,25 или просто 1,5.
3) Для нахождения координаты вершины D параллелограмма ABCD составьте выражения: длина отрезка АС равна длине отрезка BD, т.е. (8+2)2+(-4-0)2+(9-1)2=(x+1)2+(y-2)2+(z-3)2, где (x;y;z) - координаты точки D. Аналогично выражения: длина отрезка АВ равна длине отрезка CD. А потом, например, длина отрезка AN равна длине отрезка ND. Составьте и решите систему из трех уравнений с тремя неизвестными
Вот как мысленно можно распутать такую задачу :)
Раз диагональное сечение - прямоугольный треугольник, то есть половина квадрата со стороной, равной боковому ребру, и основание этого сечения - диагональ (тоже) квадрата в основании пирамиды, то
1. Боковое ребро равно стороне основания (то есть все ребра пирамиды равны между собой)
2. Площадь основания равна удвоенной площади диагонального сечения, то есть 32*2 = 64, соответственно, сторона равна 8.
Итак, все ребра пирамиды равны 8.
Боковая поверхность состоит из четырех правильных треугольников со стороной, равной 8. Площадь одного такого треугольника 8^2*корень(3)/4, а вся боковая поверхность имеет площадь 8^2*корень(3) = 64*корень(3);
2) Пусть средняя линия MN. N- середина ВС, аналогично пункту 1 находим координаты точки N: ((-1+8)/2;(2-4)/2; (3+9)/2) или (3,5;-1;6). Тогда длина отрезка MN равна корню квадратному из выражения (3,5-3)2+(-1+2)2+(6-5)2 (тут каждая скобка в квадрате!), равно корню квадратному из 2,25 или просто 1,5.
3) Для нахождения координаты вершины D параллелограмма ABCD составьте выражения: длина отрезка АС равна длине отрезка BD, т.е. (8+2)2+(-4-0)2+(9-1)2=(x+1)2+(y-2)2+(z-3)2, где (x;y;z) - координаты точки D. Аналогично выражения: длина отрезка АВ равна длине отрезка CD. А потом, например, длина отрезка AN равна длине отрезка ND. Составьте и решите систему из трех уравнений с тремя неизвестными