Это очень известная задача, и решается она просто (то есть на уровне школьника) только благодаря подбору данных. Само собой, можно сократить все числа на 100, и искать такую точку К внутри треугольника АВС, что АК + 2*ВК + 3*СК минимально.
Но АК + 2*ВК + 3*СК = АК + СК + 2*(ВК + СК) >= AC + 2*BC.
Всегда. Причем равенство возникает только в случае, если К совпадаетс с С. Во всех других случаях АК + 2*ВК + 3*СК > AC + 2*BC;
Поэтому колодец надо рыть прямо в деревне С.
Если бы в деревне С жило 299 семей, такую задачу с трудом решил бы и профессор, причем настоящий, а не местного разлива
Радиус описанной окружности прямоугольного треугольника равен половине гипотенузы.
По т.Пифагора с²=a²+b², где с - гипотенуза, a и b – катеты.
с=√(9²+12²)=15
R=15:2=7,5 см
Подробно.
Центр описанной окружности треугольника лежит на пересечении срединных перпендикуляров к его сторонам.
Срединные перпендикуляры прямоугольного треугольника пересекаются на середине гипотенузы, следовательно центр описанной окружности - середина гипотенузы, и радиус описанной окружности прямоугольного треугольника равен половине гипотенузы. R=7,5 см.
Это очень известная задача, и решается она просто (то есть на уровне школьника) только благодаря подбору данных. Само собой, можно сократить все числа на 100, и искать такую точку К внутри треугольника АВС, что АК + 2*ВК + 3*СК минимально.
Но АК + 2*ВК + 3*СК = АК + СК + 2*(ВК + СК) >= AC + 2*BC.
Всегда. Причем равенство возникает только в случае, если К совпадаетс с С. Во всех других случаях АК + 2*ВК + 3*СК > AC + 2*BC;
Поэтому колодец надо рыть прямо в деревне С.
Если бы в деревне С жило 299 семей, такую задачу с трудом решил бы и профессор, причем настоящий, а не местного разлива
Радиус описанной окружности прямоугольного треугольника равен половине гипотенузы.
По т.Пифагора с²=a²+b², где с - гипотенуза, a и b – катеты.
с=√(9²+12²)=15
R=15:2=7,5 см
Подробно.
Центр описанной окружности треугольника лежит на пересечении срединных перпендикуляров к его сторонам.
Срединные перпендикуляры прямоугольного треугольника пересекаются на середине гипотенузы, следовательно центр описанной окружности - середина гипотенузы, и радиус описанной окружности прямоугольного треугольника равен половине гипотенузы. R=7,5 см.