Длины всех сторон двух подобных , но не равных друг другу треугольников целые числа . Чему может быть равен периметр большего , если в одном треугольнике есть длины 2 и 6 , а в другом треугольнике есть сторона длины 3 . Найдите все варианты
Объяснение:
1) В треугольнике с со сторонами 2, 6 , третья сторона может быть равной 5,6,7 согласно теореме о неравенстве сторон треугольника
( если х-третья сторона , то x+2>6 и 6+2>x ⇒ 4<х<8).
2)Тк треугольники подобны и известна одна сторона второго треугольника , то коэффициент подобия может быть равен
а) к=3:2=3/2 , или б) к=3:6=1/2.
Случай а) невозможен для чисел 5,7 из-за условия " Длины всех сторон двух треугольников целые числа...".
Проверим для стороны равной числу 6 : стороны второго треугольника будут равны 6*(3/2)=9 и 2*(3/2)=3. Получили
1 треугольник , стороны 6,6,2 , Р=14 ед,
2 треугольник , стороны 9,9,3 , Р=21 ед.
Случай б) невозможен для чисел 5,7 из-за условия " Длины всех сторон двух треугольников целые числа...".
Проверим для стороны равной числу 6 : стороны второго треугольника будут равны 6*(1/2)=3 и 2*(1/2)=1. Получили
1 треугольник , стороны 6,6,2 , Р=14 ед,
2 треугольник , стороны 3,3,1 , Р=7 ед.
ответ .Периметр большего треугольника 21 ед.
Теорема о неравенстве треугольника " каждая сторона треугольника всегда меньше сумме двух других его сторон."
1,5 ед.
Объяснение:
Уточненное условие:
ABCD- выпуклый четырёхугольник, где AВ=7, BC=4,
AD=DC, угол ABD=DBC, точка E на отрезке AB такова, что угол DEB=90°.
Найдите длину отрезка АЕ.
Дано: ABCD- выпуклый четырёхугольник;
AВ=7, BC=4,
AD=DC, ∠ABD=∠DBC, ∠DEB = 90°.
Найти: AE.
Проведем перпендикуляр к продолжению стороны ВС.
1. Рассмотрим ΔDEB и ΔВНD - прямоугольные.
∠1 = ∠2 (условие)
BD - общая.
⇒ ΔDEB = ΔВНD (по гипотенузе и острому углу)
В равных треугольниках соответственные элементы равны.⇒ ЕВ = ВН; ED = HD.
2. Рассмотрим ΔAED и ΔDCH - прямоугольные.
AD = DC (условие)
ED = DH (п.1)
⇒ ΔAED = ΔDCH (по катету и гипотенузе)
АЕ = СН (как соответственные элементы)
3. Пусть АЕ = СН = х
Тогда:
ВН = 4+х
ЕВ = 7-х
ВН = ЕВ (п.1) ⇒
4 + х = 7 - х
2х = 3
х = 1,5
АЕ = 1,5
Длины всех сторон двух подобных , но не равных друг другу треугольников целые числа . Чему может быть равен периметр большего , если в одном треугольнике есть длины 2 и 6 , а в другом треугольнике есть сторона длины 3 . Найдите все варианты
Объяснение:
1) В треугольнике с со сторонами 2, 6 , третья сторона может быть равной 5,6,7 согласно теореме о неравенстве сторон треугольника
( если х-третья сторона , то x+2>6 и 6+2>x ⇒ 4<х<8).
2)Тк треугольники подобны и известна одна сторона второго треугольника , то коэффициент подобия может быть равен
а) к=3:2=3/2 , или б) к=3:6=1/2.
Случай а) невозможен для чисел 5,7 из-за условия " Длины всех сторон двух треугольников целые числа...".
Проверим для стороны равной числу 6 : стороны второго треугольника будут равны 6*(3/2)=9 и 2*(3/2)=3. Получили
1 треугольник , стороны 6,6,2 , Р=14 ед,
2 треугольник , стороны 9,9,3 , Р=21 ед.
Случай б) невозможен для чисел 5,7 из-за условия " Длины всех сторон двух треугольников целые числа...".
Проверим для стороны равной числу 6 : стороны второго треугольника будут равны 6*(1/2)=3 и 2*(1/2)=1. Получили
1 треугольник , стороны 6,6,2 , Р=14 ед,
2 треугольник , стороны 3,3,1 , Р=7 ед.
ответ .Периметр большего треугольника 21 ед.
Теорема о неравенстве треугольника " каждая сторона треугольника всегда меньше сумме двух других его сторон."
orjabinina