В 1106. Периметри двох правильних трикутників відно- тром дорівнює 50 см. Знайдіть сторону трикутника, пери- сяться як 5:6. Сторона трикутника з меншим периме- метр якого більший.
Из условия нам известно, что один из острых углов прямоугольного треугольника равен 60°, а разность гипотенузы и меньшего катета равна 28 см.
Давайте прежде всего найдем третий угол прямоугольного треугольника, зная, что сумма углов треугольника равна 180°.
180° - 90° - 60° = 30° третий угол треугольника.
Известно, что катет лежащий напротив угла в 30° равен половине гипотенузы, а так же известно, что напротив меньшего угла прямоугольного треугольника лежит меньшая сторона.
Составим и решим уравнение.
Пусть меньший катет равен x, а гипотенуза равна 2x.
Две параллельные прямые пересекаются третьей прямой, поэтому выполняются следующие положения: углы 2 и 4 равны как вертикальные, сумма 4 и вертикального угла углу 1 равна 180° как внутренние односторонние, значит сумма углов 1 и 2 равна 180°, угол 1 составляет 5 частей, угол 2 - 4 части, всего 9 частей, тогда 1 часть 180°: 9 = 20°. угол 1 5·20° = 100°, угол 2 - 4·20° = 80°. угол 4 равен 80°(как вертикальный углу 2). угол 3 и угол 4 – смежные, их сумма равна 180°. угол 3 равен 180° - угол 4 = 180° -80° = 100°.
Объяснение:
Из условия нам известно, что один из острых углов прямоугольного треугольника равен 60°, а разность гипотенузы и меньшего катета равна 28 см.
Давайте прежде всего найдем третий угол прямоугольного треугольника, зная, что сумма углов треугольника равна 180°.
180° - 90° - 60° = 30° третий угол треугольника.
Известно, что катет лежащий напротив угла в 30° равен половине гипотенузы, а так же известно, что напротив меньшего угла прямоугольного треугольника лежит меньшая сторона.
Составим и решим уравнение.
Пусть меньший катет равен x, а гипотенуза равна 2x.
Исходя из условия:
2x - x = 28;
x = 28 см катет прямоугольного треугольника.
Ищем гипотенузу 2x = 2 * 28 = 56 см.