В АВС угол С - прямой, АС = 8 см, ВС = 6 см. а) На одном чертеже подобия соответственно равными 1/4 и 3/4. б) Найдите длины медивн С1М1 и С2М2 построенных треугольников.
1) Сторону правильного n-угольника можно вычислить по формуле a=2R*sin 180/n, где n - количество сторон. Однако, R мы не знаем. Его можно вычислить по другой формуле - R=r/cos 180/n. Подставим сюда известные числовые значения: R=3/cos 18=3/0.95=3.15 (см). Найдем сторону фигуры: a=2*3.15*sin 180/n=2*3.15*0.3=1.89 (см) ответ: 1.89 см. 2) Найдем R: R = r/cos 180/n=5/√3/2=10√3/3 (см) Длина стороны равна R, следовательно a=R=10√3/3, значит, P = 6a=10√3/3*6=20√3 (cм) или 34.64 см. ответ: 20√3 см или 34.64 см. 3) Радиус описанной около 6-угольника окружности = длине стороны, следовательно R = 5√3 см. Для треугольника эта же окружность является вписанной, т.е. для треугольника r=5√3. В свою очередь, R=2r=2*5√3=10√3 (см). Сторону правильного треугольника можно вычислить по формуле a=R√3=10√3*√3=10*3=30 (см). ответ: 30 см.
R=3/cos 18=3/0.95=3.15 (см).
Найдем сторону фигуры:
a=2*3.15*sin 180/n=2*3.15*0.3=1.89 (см)
ответ: 1.89 см.
2) Найдем R:
R = r/cos 180/n=5/√3/2=10√3/3 (см)
Длина стороны равна R, следовательно a=R=10√3/3, значит,
P = 6a=10√3/3*6=20√3 (cм) или 34.64 см.
ответ: 20√3 см или 34.64 см.
3) Радиус описанной около 6-угольника окружности = длине стороны, следовательно R = 5√3 см. Для треугольника эта же окружность является вписанной, т.е. для треугольника r=5√3. В свою очередь, R=2r=2*5√3=10√3 (см). Сторону правильного треугольника можно вычислить по формуле a=R√3=10√3*√3=10*3=30 (см).
ответ: 30 см.
см²
Объяснение:
Дано (см. рисунок):
Параллелограмм ABCD
AB = 3 см
BC = 5 см
α = ∠BAE – острый угол параллелограмма
tgα = 2
Найти: площадь параллелограмма S.
Решение. Проведём высоту h = BE = DF параллелограмма и введём обозначение x = AE = CF. По определению
Отсюда
h = tgα·x = 2·x.
Так как треугольник ABE прямоугольный с гипотенузой AB, то можно применит теорему Пифагора:
AB² = AE² + BE² или 3² = x² + h² или 3² = x² + (2·x)².
Отсюда
5·x² = 9 или x = 3/√5.
Площадь параллелограмма определяется через сторону AD и высоту h по формуле:
S = AD·h.
Тогда
S = AD·h = 5·h = 5·2·x = 5·2·3/√5 = 6√5 см².