В. через точку перетину двох прямих на площині проведено проміньперпендикулярний до однієї з прямих. знайдіть кути, утворені при перетині цихпрямих. якщо даний промінь з другою прямою утворки кут 58
1. При перетині паралельних прямих січною утворюються 4 однакові пари кутів: 37° і 180 - 37 = 143°. Тобто, серед семи інших кутів три по 37° і чотири по 143°.
2. Сума внутрішніх одностороніх кутів, утворених при перетині паралельних прямих січною, складає 180°. Отже:
6х + 3х = 180
9х = 180
х = 20
3·20 = 60°
6·20 = 120°
Кути дорівнюють 60° і 120°.
3. Сума кутів, утворених при перетині двох прямих складає 360°.
Тому четвертий кут дорівнює: 360 - 209 = 151°.
Отже, чотири з восьми кутів дорівнюють 151° кожен, ще чотири мають по 180 - 151 = 29° кожен.
1. При перетині паралельних прямих січною утворюються 4 однакові пари кутів: 37° і 180 - 37 = 143°. Тобто, серед семи інших кутів три по 37° і чотири по 143°.
2. Сума внутрішніх одностороніх кутів, утворених при перетині паралельних прямих січною, складає 180°. Отже:
6х + 3х = 180
9х = 180
х = 20
3·20 = 60°
6·20 = 120°
Кути дорівнюють 60° і 120°.
3. Сума кутів, утворених при перетині двох прямих складає 360°.
Тому четвертий кут дорівнює: 360 - 209 = 151°.
Отже, чотири з восьми кутів дорівнюють 151° кожен, ще чотири мають по 180 - 151 = 29° кожен.
ОД = Н/tg 60° = 10√3 / √3 = 10.
ОД (по свойству медиан) = (1/3) СД =(1/3)*а*cos 30° = (1/3)*a *(√3/2) = a√3/6. Отсюда а (сторона основания пирамиды) равно: а = 6*ОД/√3 = 6*10/√3 = 60/√3 = 20√3.
Периметр основания Р = 3а = 3*20√3 = 60√3.
Апофема SД = Н/sin 60° = 10√3/(√3/2) = 20 = А.
Площадь боковой поверхности:
Sбок = (1/2)Р*А = (1/2)*60√3*20 = 600√3.
Площадь основания:
Sо = а²√3/4 = (20√3)²*√3/4 = 300√3.
Площадь полной поверхности:
S = Sо + Sбок = 300√3 + 600√3 = 900√3.
Объём пирамиды V = (1/3)Sо*H = (1/3)*(300√3)*(10√3) =
= 3000.