В четырехугольнике ABCD (BC || AD) BC=8, а биссектриса угла D попадает в т.В и образует со стороной ВС угол в 30°, ас боковой
стороной AB угол в 90°. Найти расстояние от т.В до AD, диагональ
BD и SABCD. .
(Примечание: не использовать свойство прямоугольного треугольника:
против угла в 309 лежит катет равный половине гипотенузы)
Проведем высоту СМ. И рассмотрим получившийся четырехугольник ВАМС, это прямоугольник, так как ∠А=∠В=90, и ∠М=∠С=90(по опр. высоты) ⇒ВА=СМ=6, и ВС=АМ=6.
Рассмотрим ΔСМD: СМ мы провели так, что она разделила ∠ВСD=135, на ∠МСВ=90 и ∠МСD=45. Если ∠МСD=45, а ∠СМD=90(по опр. высоты), то ∠СDM=45(по теореме о сумме ∠ в Δ) ⇒ ΔСМD - равнобедренный (по признаку) ⇒ СМ=MD=6(по опр. равноб. Δ)
Найдем основание трапеции: АМ+МD
6+6=12
Найдем площадь:
S=
ответ:54
По условию, b = 8, α = 37°, γ=60°.
Тогда β = 180° - (α + γ) , тогда sin β = sin(180° - (α + γ)) = sin (α + γ)
По теореме синусов: b / sin β = c /sin γ, отсюда c = b · (sin γ / sin β)
Тогда площадь треугольника: S = 1/2 · b · c · sin α = b/2 · b · (sin γ / sin β) · sin α.
Таким образом S = (b2 · sin α · sin γ) / (2 · sin β)
S = [b2 · sin α · sin γ] / [2 · sin (α + γ)]
S = [64 · sin 37° · sin 60°] / [2 · sin 97°]
По таблице Брадиса:
sin 37° ≈ 0,602
sin 60° ≈ 0,866
sin 97° ≈ 0,993
S ≈ [64 · 0,602 · 0,866] / [2 · 0,993] ≈ 16,8
ответ ≈ 16,8