task/29640004 Напишите уравнение прямой, проходящей через две данные точки: С(2;5) и D(5;2) .
y = k*x +b → уравнение прямой
y₁ =k*x₁ +b → условие (прямая проходит через точку A(x ₁ ; y₁ ) ;
y - y₁= k*(x -x₁) → уравнение прямой , проход. через точку A(x ₁ ; y₁ ) ;
y₂ - y₁= k*(x₂ -x₁) → условие (прямая проходит через точку B(x₂ ;y₂ ) ;
уравнение прямой , проход. через две точки A(x ₁ ; y₁ ) и B(x₂ ;y₂) :
(y - y₁) / (y₂ - y₁)=(x -x₁) / (x₂ - x₁) .
(y - 5) / (2 - 5)=(x -2) / (5 - 2 ) ⇔ y - 5= - (x -2) ⇔ y = - x +7 .
ответ : y = - x +7 .
∠ТАМ = 27°
Объяснение:
Дано:
∠ВАС = 34°
∠АВС = 46°
АМ - биссектриса
АТ - высота
Найти:
∠ТАМ - угол между высотой и биссектрисой
Найдём третий угол Δ АВС
∠АСВ = 180° - (∠ВАС + ∠АВС) = 180° - (34° + 46°) = 100°
Поскольку ∠АСВ тупой, то высота АТ опущена на продолжение стороны ВС, и
∠ТАМ = ∠ТАС + ∠САМ
∠ТСА = внешний угол про вершине С треугольника АВС, поэтому
∠ТСА = ∠ВАС + ∠АВС = 34° + 46° = 80°
Тогда поскольку АТ - высота, и ∠АТС = 90°, то
∠ТАС = 90° - ∠ТСА = 90° - 80° = 10°
∠САМ является половиной угла ВАС, так как АМ - биссектриса
∠САМ = 0,5 ∠ВАС = 0,5 · 34° = 17°
∠ТАМ = ∠ТАС + ∠САМ = 10° + 17° = 27°
task/29640004 Напишите уравнение прямой, проходящей через две данные точки: С(2;5) и D(5;2) .
y = k*x +b → уравнение прямой
y₁ =k*x₁ +b → условие (прямая проходит через точку A(x ₁ ; y₁ ) ;
y - y₁= k*(x -x₁) → уравнение прямой , проход. через точку A(x ₁ ; y₁ ) ;
y₂ - y₁= k*(x₂ -x₁) → условие (прямая проходит через точку B(x₂ ;y₂ ) ;
уравнение прямой , проход. через две точки A(x ₁ ; y₁ ) и B(x₂ ;y₂) :
(y - y₁) / (y₂ - y₁)=(x -x₁) / (x₂ - x₁) .
(y - 5) / (2 - 5)=(x -2) / (5 - 2 ) ⇔ y - 5= - (x -2) ⇔ y = - x +7 .
ответ : y = - x +7 .
∠ТАМ = 27°
Объяснение:
Дано:
∠ВАС = 34°
∠АВС = 46°
АМ - биссектриса
АТ - высота
Найти:
∠ТАМ - угол между высотой и биссектрисой
Найдём третий угол Δ АВС
∠АСВ = 180° - (∠ВАС + ∠АВС) = 180° - (34° + 46°) = 100°
Поскольку ∠АСВ тупой, то высота АТ опущена на продолжение стороны ВС, и
∠ТАМ = ∠ТАС + ∠САМ
∠ТСА = внешний угол про вершине С треугольника АВС, поэтому
∠ТСА = ∠ВАС + ∠АВС = 34° + 46° = 80°
Тогда поскольку АТ - высота, и ∠АТС = 90°, то
∠ТАС = 90° - ∠ТСА = 90° - 80° = 10°
∠САМ является половиной угла ВАС, так как АМ - биссектриса
∠САМ = 0,5 ∠ВАС = 0,5 · 34° = 17°
∠ТАМ = ∠ТАС + ∠САМ = 10° + 17° = 27°