Биссектриса углов А и Д параллелограмма АВСД пересекаются в точке М, дежащий на стороне ВС. Луч ДМ пересекает прямую АВ в точке N. Найдите периметр параллелограмма АВСД, если АN=10 СМ
РЕШЕНИЕ
сделаем построение по условию
<ADN=<CDN т.к. DN - биссектриса <D
(AN) || (CD) тогда <AND=<CDN -скрещивающиеся углы
треугольник NAD - равнобедренный (<AND=<АDN )
|AN|=|AD\=10см
(АМ) - биссектриса, высота, медиана
по теореме Фалеса параллельные прямые (AD) || (BC) отсекают на сторонах <AND
Так как AD = BD, треугольник ABD - равнобедренный, значит, по определению, углы DAB и DBA равны.
Так как DC = BC, треугольник DBC равнобедренный, значит, по определению, углы CDB и CBD равны.
Так как треугольник АВС по условию равнобедренный, углы DAB и DCB равны.
Углы ADB и CDB в сумме имеют 180°, так как их стороны образуют прямую АС, а угол CDB равен сумме углов DAB и DBA как внешний угол по отношению к треугольнику ABD.
Тогда ∠CDB = 2∠DCB = ∠CBD, и 2∠DCB + 2∠DCB + ∠DCB = 5∠DCB = 180°, откуда ∠DCB = 180:5 = 36°.
∠DAB = ∠DCB = 36°, и, наконец, ∠АВС = ∠CBD + ∠DBA = 2∠DCB + ∠DCB = 3*36 = 108°.
Биссектриса углов А и Д параллелограмма АВСД пересекаются в точке М, дежащий на стороне ВС. Луч ДМ пересекает прямую АВ в точке N. Найдите периметр параллелограмма АВСД, если АN=10 СМ
РЕШЕНИЕ
сделаем построение по условию
<ADN=<CDN т.к. DN - биссектриса <D
(AN) || (CD) тогда <AND=<CDN -скрещивающиеся углы
треугольник NAD - равнобедренный (<AND=<АDN )
|AN|=|AD\=10см
(АМ) - биссектриса, высота, медиана
по теореме Фалеса параллельные прямые (AD) || (BC) отсекают на сторонах <AND
пропорциональные отрезки , т.к. | NM |=| MD | следовательно |NB| = |АB| =|AN| / 2=10/2=5см
ПЕРИМЕТР параллелограмма AB+BC+CD+DA=5+10+5+10=30 см
ответ периметр 30см
Так как AD = BD, треугольник ABD - равнобедренный, значит, по определению, углы DAB и DBA равны.
Так как DC = BC, треугольник DBC равнобедренный, значит, по определению, углы CDB и CBD равны.
Так как треугольник АВС по условию равнобедренный, углы DAB и DCB равны.
Углы ADB и CDB в сумме имеют 180°, так как их стороны образуют прямую АС, а угол CDB равен сумме углов DAB и DBA как внешний угол по отношению к треугольнику ABD.
Тогда ∠CDB = 2∠DCB = ∠CBD, и 2∠DCB + 2∠DCB + ∠DCB = 5∠DCB = 180°, откуда ∠DCB = 180:5 = 36°.
∠DAB = ∠DCB = 36°, и, наконец, ∠АВС = ∠CBD + ∠DBA = 2∠DCB + ∠DCB = 3*36 = 108°.
Углы треугольника АВС равны 108°, 36° и 36°
ответ: 108°, 36° и 36°