В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
кирил2088
кирил2088
12.07.2021 16:13 •  Геометрия

В цилиндре проведено сечение через две образующие. Высота цилиндра H, радиус r. Сечение отсекает от направляющей дугу в 60 градусов. Найдите площадь сечения.

Показать ответ
Ответ:
maria27012007
maria27012007
06.12.2022 10:12
1) Средняя линия треугольника, соединяющая середины двух сторон, параллельна третьей стороне и равна ее половине. В данном треугольнке средняя линия параллельна основанию и равна его половине ⇒ длина основания равна 2*5 = 10 (см)

2) В прямоугольном треугольнике ABC:
AB - гипотенуза
BC - катет, противолежащий углу 48 градусов
AC = 4см, - катет прилежащий углу 48 градусов
∠BAC = 48°

Катет BC можно найти с тангенса известного угла BAC. Тангенсом острого угла прямоугольного треугольника является отношение противолежащего этому углу катета BC к прилежащему AC.
                   BC
tg(BAC) =  ⇒ BC = AC * tg(BAC)
                   AC

По таблице Брадиса определяем, что тангенсу 48° соответствует величина 1,11061

BC = AC * 1,11061
BC = 4 * 1,11061 = 4, 44244 ≈ 4,5 (cм)
0,0(0 оценок)
Ответ:
студент168
студент168
07.10.2020 21:10

 Пусть ABCD - прямоугольная трапеция, в которую вписана окружность с центром в т. О.

ВС - основание трапеции
AD - основание трапеции
∠A = 90°
DE = 16 см
AE = AM = BM = BK = KO = MO = EO = r = 12cм

AD = AE + DE

AD = 12 + 16 = 28 (cм)

В прямоугольном треугольнике ODE:
катет OE = 12см 
катет DE = 16 см
OD - гипотенуза
по теореме Пифагора
OD² = OE² + DE²
OD² = 12² + 16² = 400
OD = √400 = 20 (см) 

Свойство касательных: Отрезки касательных к окружности, проведенных из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности ⇒ 
⇒ ED = FD = 16cм и CK = CF как отрезки касательных, ОD - биссектриса ∠ADC, OC - биссектриса ∠BCD

Сумма углов трапеции, прилежащих к боковой стороне равна 180° ⇒
 ∠BCD + ∠ADC = 180° ⇒ ∠DCO + ∠CDO = 180 / 2 = 90 (°)
Сумма углов треугольника равна 180° ⇒ 
⇒ ∠COD = 180 - (∠DCO + ∠CDO ) = 180 - 90 = 90(°)
В прямоугольном треугольнике COD

∠OCD= 180 - 90 - ∠CDO ⇒ ∠OCD = 90 - ∠CDO

В прямоугольном треугольнике OFC

∠OCF = 180 - 90 - ∠COF = 90 - ∠COF ⇒ ∠CDO = ∠COF 

В прямоугольном треугольнике DFO

∠DOF = 180 - 90 - ∠CDO = 90 - ∠CDO = ∠OCD 

Треугольники DFO u OFC подобны по трем углам 

∠DFO = ∠OFC = 90° т.к. радиус окружности, проеведенный в точку касания, перпендикулярен касательной 

∠CDO = ∠COF

∠DOF = ∠OCD 

У подобных треугольников углы равны, а стороны одного треугольника пропорциональны сходственным сторонам другого треугольника. ⇒ 

DO : OC = DF : OF = OF : CF

20 : OC = 16 : 12 = 12 : CF

16 : 12 = 12 : CF

Свойство пропорции: произведение крайних членов равно произведению средних

16СF = 12*12

16CF = 144

CF = 144 / 16

CF = 9 (cм), тогда CK = 9 см

BC = BK + CK

BC = 12 + 9 = 21 (cм)

Если в прямоугольную трапецию вписана окружность, ее площадь равна произведению оснований.

S = AD * BC

S = 28 * 12 = 336 (см²)


(не смогла нарисовать ровные дужки для обозначения равных углов, поэтому обозначила их цифрами)

 -----------------------------------------------------------------------------


Найдите площадь прямоугольной трапеции, в которой точка соприкосновения вписанного в нее круга делит
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота