Від даного променя відкладіть даний кут .Побудову виконали Петро і Яринкс.Хто з дітей припустився помилки ? Кути отримали однакові. А) Яринка позначила на сторонах даного кута А дві довільні точки В і С побудувала на промені трикутника ОКМ= АВС( лінійку і циркуль)
Б) Петро за до транспортира виміряв кута А і відклав його на промені
Объяснение:
1)
6 и 8 - значение катетов.
По теореме Пифагора найдем гипотенузу.
√(6²+8²)=√(36+64)=√100=10
ответ: 10
2)
Условие не правильно, гипотенуза не может быть меньше катета.
3)
12 и 35- значение катетов
По теореме Пифагора найдем гипотенузу.
√(12²+35²)=√(144+1225)=√1369=37
ответ: 37
4)
40 и 42 значение катетов.
По теореме Пифагора найдем гипотенузу
√(40²+42²)=√(1600+1764)=√3364=58
ответ: 58
5)
20- значение гипотенузы
15 - значение катета.
По теореме Пифагора найдем катет
√(20²-15²)=√(400-225)=√175=5√7
ответ: 5√7
6)
1 и 2√6 - значение катетов.
По теореме Пифагора найдем гипотенузу.
√(1²+(2√6)²)=√(1+4*6)=√25=5
ответ: 5
7)
6 и 6√3 - значение катетов.
По теореме Пифагора найдем гипотенузу.
√(6²+(6√3)²)=√(36+36*3)=√144=12
ответ: 12
8)
10√2 - значение гипотенузы
2- значение катета
По теореме Пифагора найдем катет.
√((10√2)²-2²)=√(200-4)=√196=14
ответ: 14
ответ: 1. 10
2. 18
3. Основания 14 и 22. Периметр 64.
Объяснение:
1. Используем теорему о пропорциональных отрезках (если параллельные прямые пересекают стороны угла, то отрезки, образовавшиеся на одной стороне угла, пропорциональны соответствующим отрезкам, образовавшимся на другой стороне).
Составляем пропорцию: 3/6 = 5 /х,откуда х = 5*6 / 3 = 10
2. Рассмотрим треугольник АВС. Отрезок, соединяющий середины его сторон P и M, это средняя линия данного треугольника, она равна половине его основания, т.е. 1/2 диагонали АС. Аналогично для треугольника BCD отрезок MN это средняя линия, и он также равен полочине основания, т.е. диагонали BD.
Рассуждая аналогично для треугольников ACD и ABD находим, периметр MNPQ = 1/2 * АС + 1/2 АС + 1/2 BD + 1/2 BD = AC + BD = 18
У четырехугольника MNPQ противоположные стороны равны и параллельны (По свойству средних линий рассмотренных выше треугольников), значит он является параллелограммом по определению.
3. Рассмотрим ΔABC. ∠BCA =∠ CAD как внутренние накрест лежащие при параллельных прямых, ∠BAC = ∠CAD по условию задачи. Вывод: ∠BAC = ∠BCA, а это углы при основании AC ΔABC. ⇒ Данный треугольник равнобедренный. KM является его средней линией. ⇒ AB = BC = 14.
KL = 7 + 4 + 7 = 18. Поскольку это по условиям задачи среджняя линия трапеции, она равна полусумме оснований трапеции. Находим большее основание:
1/2 AD + 1/2BC = 18
1/2AD + 7 = 18
AD = 22
Периметр трапеции равен 22 + 14 + 14 + 14 = 64