Від початку кординат відкладено вектор a(8;5).Обчислити кординат кінцевої точки вектора,який отримуємо за до паралельного перенесення на вектор m(8;0)
1. Нехай ∠1 = х (°), тоді ∠2 = x+20 (°). Сумма внутрішніх односторонніх кутів при паралельних прямих і січній дорівнює 180° ⇒ ∠1+∠2 = 180°. Складемо і вирішимо рівняння:
x+20+x = 180
2x = 160
x = 80
Отже, градусна міра ∠1 = х = 80°, тоді ∠2 = х+20 = 80+20 = 100°.
Відповідь: 80°; 100°.
2. Нехай ∠1 = х (°), тоді ∠2 = 4x (°). Сумма внутрішніх односторонніх кутів при паралельних прямих і січній дорівнює 180° ⇒ ∠1+∠2 = 180°. Складемо і вирішимо рівняння:
x+4x = 180
5x = 180
x = 36
Отже, градусна міра ∠1 = х = 36°, тоді ∠2 = 4x = 4·36= 144°.
85+5√119см²
Объяснение:
Дано:
ABCA1B1C1- прямая призма.
∆А1В1С1- прямоугольный.
А1В1=5см
А1С1=12см.
Sбок=?
Решение.
По теореме Пифагора найдем второй катет ∆А1В1С1
С1В1²=А1С1²-А1В1²=12²-5²=144-25=119 см
С1В1=√119 см
√25>√119
5>√119 значит
АВА1В1- является квадрат.
А1В1=В1В=АВ=АА1=5см.
ВВ1=5см высота призмы.
Формула нахождения площади боковой поверхности призмы.
Sбок=Росн*h, где Росн- периметр основания, h=BB1 - высота.
Росн=А1В1+В1С1+А1С1=12+5+√119=
=17+√119 см периметр треугольника.
Sбок=(17+√119)*5=85+5√119 см² площадь боковой поверхности призмы.
1. Нехай ∠1 = х (°), тоді ∠2 = x+20 (°). Сумма внутрішніх односторонніх кутів при паралельних прямих і січній дорівнює 180° ⇒ ∠1+∠2 = 180°. Складемо і вирішимо рівняння:
x+20+x = 180
2x = 160
x = 80
Отже, градусна міра ∠1 = х = 80°, тоді ∠2 = х+20 = 80+20 = 100°.
Відповідь: 80°; 100°.
2. Нехай ∠1 = х (°), тоді ∠2 = 4x (°). Сумма внутрішніх односторонніх кутів при паралельних прямих і січній дорівнює 180° ⇒ ∠1+∠2 = 180°. Складемо і вирішимо рівняння:
x+4x = 180
5x = 180
x = 36
Отже, градусна міра ∠1 = х = 36°, тоді ∠2 = 4x = 4·36= 144°.
Відповідь: 36°; 144°.