ів дам. До іть 94. Накресліть два рівних трикутники ABC і А1В1С1.
1) Позначте точки K i K, на сторонах АВ і А1В1 так, щоб AK = А1К1; точки L і L1 - на сторонах ВС і В1С1 так, щоб BL = B1L1; точки M i M1 на сторонах СА і С1А1 так, щоб СМ = С1М1. Утворіть трикутники KLM i K1L1M1.
Які трикутники рівні на малюнку? Чому?
2) Дайте відповідь на це саме запитання, якщо точки K, K1, L, L1, M, M1, позначити на продовженнях сторін трикутника за відповідні вершини.
110°
Объяснение:
1) NH - медиана ΔTNQ ⇒ по свойству медианы TH=HQ.
По условию MT=QK ⇒ МH=HK, т.к. сумма равных отрезков даёт в итоге равные отрезки: MT+TH = QK+HQ. ⇒ NH - медиана ΔMNK.
По условию задачи NH - высота ΔMNK.
Если в треугольнике медиана и высота, проведённые к одной стороне, совпадают, то этот треугольник равнобедренный.⇒ ΔMNK - равнобедренный, что и требовалось доказать.
ΔTNQ также равнобедренный, т.к. NH - медиана и высота.
2) ∠2 + ∠1 − ∠4 = 30°
∠2=∠1, т.к. у равнобедренного ΔTNQ углы при основании равны.
По свойству смежных углов: ∠4 = 180°-∠2 , но ∠2=∠1, поэтому ∠4=180°-∠1
⇒ ∠1+∠1-(180°-∠1)=30°
3*∠1=30°+180°
3*∠1=210°
∠1=70°
По свойству смежных углов: ∠3=180°-∠1=180°-70°=110°
a) b;
B)
г) п.
a
+
m
А6. Отрезок МN является средней линией треугольника ABC. Число k, для которого vec AB =k* vec MA , равно:
а) 2,
6) -2;
1 2 ;
r)- 1 2 .
A7. ABCD параллелограмм, O - roq пересечения его диагоналей. Тогда верным будет равенство:
a) vec AO - vec OD = vec AD
6)
vec AO - vec BO = vec AD
;
B) vec AB + vec BO = vec AO ;
г) vec AB + vec BO = vec AC .
. А8. В четырехугольнике АBCD vec AB = vec DC точка K-* cepe дина AD. Прямая СК пересекает прямую ВА в точке N. Среди указанных пар векторов не являются коллинеар ными векторы:
a) vec AD u vec NK
б) vec AK u vec BC ;
в) vec AK u vec DA ;
г) vec BN H vec DC
B
M
C
A
N
Решите это пжА5. На рисунке изображены векторы. Вектор, равный век тору 3 overline a , будет векто
Решите это пжА5. На рисунке изображены векторы. Вектор, равный век тору 3 overline a , будет векто
Все ответы