По неравенству треугольника сумма двух сторон должна обязательно быть больше третьей. Пусть третья сторона равна х>0. Тогда получаем следующие неравенства
х < 3,14 + 0,6
3,14 < x + 0,6
0,6 < x + 3,14
Так как x > 0, то третье неравенство выполнено для любого положительного х.
Из первого неравенства получаем, что х < 3,81, а из второго неравенства получаем, что 2,54 < х. Значит
2,54 < х < 3,81.
Так как в условии сказано, что длина третьей стороны является целым числом, то задачу удовлетворяет только х = 3.
Ну смотри: Т.к. трапеция у нас равнобедренная, мы опустим высоты от концов меньшего основания к большему, мы получим 2 равных треугольника и прямоугольник. т.к. у нас получится прямоугольник и 2 равных треугольника нижнее основание разделится на 10 и ещё 2 равных отрезка, т.к. у нас остаётся всего 8, значит 8/2=4, значит у нас получится прямоугольный треугольник со сторонами 5(гипотенуза) и 4(катет), т.к. это египетский треугольник третья сторона(она же высота) равна 3, площадь трапеции равна полусумме оснований на высоту, то есть: (10+18)/2*3=42. ответ:42
По неравенству треугольника сумма двух сторон должна обязательно быть больше третьей. Пусть третья сторона равна х>0. Тогда получаем следующие неравенства
х < 3,14 + 0,6
3,14 < x + 0,6
0,6 < x + 3,14
Так как x > 0, то третье неравенство выполнено для любого положительного х.
Из первого неравенства получаем, что х < 3,81, а из второго неравенства получаем, что 2,54 < х. Значит
2,54 < х < 3,81.
Так как в условии сказано, что длина третьей стороны является целым числом, то задачу удовлетворяет только х = 3.
Т.к. трапеция у нас равнобедренная, мы опустим высоты от концов меньшего основания к большему, мы получим 2 равных треугольника и прямоугольник.
т.к. у нас получится прямоугольник и 2 равных треугольника нижнее основание разделится на 10 и ещё 2 равных отрезка, т.к. у нас остаётся всего 8, значит 8/2=4, значит у нас получится прямоугольный треугольник со сторонами 5(гипотенуза) и 4(катет), т.к. это египетский треугольник третья сторона(она же высота) равна 3, площадь трапеции равна полусумме оснований на высоту, то есть:
(10+18)/2*3=42. ответ:42