После победы над персами наступает блестящая эпоха в афин. афины становятся могущественной морской державой с высокоразвитыми ремеслами, кораблестроением и торговлей. много свободных и рабов из пленных, захваченных во время войны, работало в мастерских, рудниках, на строительстве, во флоте. после окончания войн источником обогащения афинской казны стал морской союз, организованный афинами для борьбы с персией на море. денежные взносы союзников, предназначавшиеся на постройку военных кораблей, афиняне стали расходовать на нужды своего государства. v век до нашей эры называют «золотым веком» в афин. в это время афины обогатили мировую культуру такими ценностями, которые, по словам афинского , достойны быть «предметом удивления для современников и потомков» . это время расцвета демократии. все свободные граждане получали право участвовать в государством. главным государственным учреждением было народное собрание, в котором могли участвовать все афинские граждане. народное собрание созывалось обычно 3 раза в месяц, а в исключительных случаях еще чаще.
Пусть основание равно Х, тогда боковая сторона равна (Х-9). В треугольнике, образованном высотой, проведенной к основанию, боковой стороной и половиной основания (данный нам треугольник равнобедренный) биссектриса угла при основании делит эту высоту в отношении 5:4, значит по свойству биссектрисы: "Биссектриса делит сторону, противолежащую углу в отношении сторон, образующих данный угол", имеем: (Х-9)/(Х/2)=5/4 или (9-Х)*2/Х=5/4. Тогда 8Х-72=5Х, отсюда Х=24. Итак, по Пифагору искомая высота равна √[(Х-9)²-(X/2)²]=√(15²-12²)=9см. ответ: высота, проведенная к основанию, равна 9см.
В треугольнике, образованном высотой, проведенной к основанию, боковой стороной и половиной основания (данный нам треугольник равнобедренный) биссектриса угла при основании делит эту высоту в отношении 5:4, значит по свойству биссектрисы: "Биссектриса делит сторону, противолежащую углу в отношении сторон, образующих данный угол", имеем: (Х-9)/(Х/2)=5/4 или (9-Х)*2/Х=5/4. Тогда 8Х-72=5Х, отсюда Х=24. Итак, по Пифагору искомая высота равна
√[(Х-9)²-(X/2)²]=√(15²-12²)=9см.
ответ: высота, проведенная к основанию, равна 9см.