В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Igor171717
Igor171717
07.02.2022 00:49 •  Геометрия

Відомо, що вершини трикутника розміщені в точках А(4;-1), В(2;3), С(-4;1) 1) визначте вид кута В трикутника АВС 2) найдіть модуль вектора ВР, якщо АР=2АС

Показать ответ
Ответ:
arinka200000
arinka200000
22.03.2020 12:20

1) 20    2) 70

Объяснение:

1. Для решения будем использовать только теорему Пифагора:

1) ΔАВС:

AC² + BC² = AB²

BC² = AB² - AC²

2) ΔAHC:

AH² + CH² = AC²

CH² = AC² - AH²

3) ΔHBC:

CH² + BH² = BC²

CH² = BC² - BH²

4) Из действия 2 и действия 3 составим уравнения:

CH² = AC² - AH² и CH² = BC² - BH², а значит:

AC² - AH² = BC² - BH²

5) Из действия 1 известно, что BC² = AB² - AC², а значит:

AC² - AH² = (AB² - AC²) - BH²

Перенесём AC² из правой части в левую, а AH² из левой части в правую:

AC² - AH² = AB² - AC² - BH²

AC² + AC² = AB² - BH² + AH²

2AC² = AB² - BH² + AH²

AC² = (AB² - BH² + AH²) ÷ 2

6) AB = AH + BH = 2 + 8 = 10

Решим уравнение:

AC² = (AB² - BH² + AH²) ÷ 2

AC² = (10² - 8² + 2²) ÷ 2

AC² = (100 - 64 + 4) ÷ 2

AC² = 40 ÷ 2

AC² = 20

ответ: AC² = 20

2. Здесь тоже будем использовать теорему Пифагора:

1) ΔACD:

AD² + CD² = AC²

AD² = AC² - CD²

2) ΔAHD:

AH² + HD² = AD²

HD² = AD² - AH²

3) ΔHCD:

HD² + HC² = CD²

HD² = CD² - HC²

4) Из действия 2 и действия 3 составим уравнения:

HD² = AD² - AH² и HD² = CD² - HC², а значит:

AD² - AH² = CD² - HC²

5) Из действия 1 известно, что AD² = AC² - CD², а значит:

AC² - CD² - AH² = CD² - HC²

Перенесём HC² из правой части в левую, а CD² из левой части в правую:

AC² - AH² + HC² = CD² + CD²

AC² - AH² + HC² = 2CD²

CD² = (AC² - AH² + HC²) ÷ 2

6) AC = AH + HC = 9 + 16 = 25

Решим уравнение:

CD² = (AC² - AH² + HC²) ÷ 2

CD² = (25² - 9² + 16²) ÷ 2

CD² = (625 - 81 + 256) ÷ 2

CD² = 400

CD = √400 = 20

7) Из действия 1 известно, что AD² = AC² - CD², а значит:

AD² = 25² - 400

AD² = 625 - 400

AD² = 225

AD = √225 = 15

8) AD = BC, a CD = AB поскольку ABCD - это прямоугольник. Значит:

Периметр ABCD = AB + BC + CD + AD

P ABCD = 20 + 15 + 20 + 15 = 70

ответ: P ABCD = 70

0,0(0 оценок)
Ответ:
ilinasmirnova5
ilinasmirnova5
26.12.2022 13:53
Здравствуйте!
когда рассматривают подобие треугольников, один из примеров подобных треугольников как раз этот)))
просто у этой темы есть история... и, если эту историю пропустить, то все дальнейшее становится менее непонятным (как в Вашем случае)))
Итак, прямоугольный треугольник с высотой, проведенной к гипотенузе 
(из вершины прямого угла)))
получилось три прямоугольных треугольника: исходный (АВС) и два ему 
подобных (АСН и ВСН)
важно сначала понять, а потом и запомнить, что все эти три треугольника подобны
в прямоугольном треугольнике сумма острых углов = 90 градусов)))
например, угол В = 90-А
и если тут же рассмотреть треугольник ВСН, то в нем тоже есть угол В, 
значит, угол НСВ = А ⇒ прямоугольные треугольники АВС и НВС подобны)))
аналогично для треугольников АВС и АНС...
угол А -- общий, ⇒ углы В и АСН -- равны))) и эти треугольники подобны)))
и осталось уяснить, что и треугольники АНС и ВНС -- подобны)))
важно увидеть все равные углы в этих треугольниках)))
иначе остальное будет неясно)))

теперь должно стать понятно, что "Углы А и НСВ равны..."
а дальше определение синуса и косинуса)))
и это тоже очень важно сначала понять, а потом и запомнить)))
синус угла = отношению ПРОТИВОлежащего катета к гипотенузе
косинус угла = отношению ПРИлежащего катета к гипотенузе
это определения)))
в любом прямоугольном треугольнике (где стороны называются катетами и гипотенузой))) можно записать эти отношения для острых углов)))
например:
sinA = CB / AB -- из треугольника АВС
sinA = CH / CA -- из треугольника НАС
sinA = sin(HCB) = HB / CB -- из треугольника НВС 
cosA = AC / AB -- из треугольника АВС
cosA = AH / CA -- из треугольника НАС
cosA = cos(HCB) = HC / CB -- из треугольника НВС
все тоже самое можно записать и для угла В )))
это вторая очень важная часть истории)))
и эти формулы используются при решении таких задач)))
т.к. по определению синуса sinA = CH / CA ⇒ 
CH = CA * sinA
теперь из равенства cosA = AC / AB выразим АС...
АС = АВ * cosA и подставим в первое равенство...
СН = АВ * cosA * sinA 
используют именно эти формулы,
т.к. по условию косинус угла А известен, АВ -- дано))) -- т.е. всегда смотрят, что именно дано в условии задачи...
и еще одна важная формула -- основное тригонометрическое тождество:
sin²x + cos²x = 1 -- верно всегда и везде и для любых углов)))
одно слово -- тождество)))
из него, когда нужно, можно и синус выразить
sin²x = 1 - cos²x ⇒ sinx = (+-) √(1 - cos²x)
и косинус...
cos²x = 1 - sin²x ⇒ cosx = +- √(1 - sin²x)
вот... как-то так...
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота