Теорема. Центр окружности, вписанной в треугольник, является точкой пересечения его биссектрис.
Доказательство. Пусть ABC – данный треугольник, O – центр вписанной в него окружности, D, E и F – точки касания окружности со сторонами. Прямоугольные треугольники AOD и AOE равны по гипотенузе и катету. У них гипотенуза AO общая, а катеты OD и OE равны как радиусы. Из равенства треугольников следует равенство углов OAD и OAE. А это значит, что точка O лежит на биссектрисе треугольника, проведённой из вершины A. Точно так же доказывается, что точка O лежит на двух других биссектрисах треугольника. Теорема доказана.
Так как окружности касаются а радиусы перпендикулярны касательной, то они лежат на одной прямой. Значит есть два случая 1) точка касания между радиусами 2) радиусы с одной стороны от точки
Обозначит А - центр первой окружности В - центр второй окружности С - точка касания. АВ = 24 см
Известно . Что АС : СВ = 7 : 5 Пусть коэффициент пропорциональности равен х, тогда АС = 7х, ВС = 5х
1 случай) точки расположены в таком порядке на прямой А С В
Значит АС + СВ = АВ или 7х+5х=24 или 12х = 24 или х=2
Значит АС = 2*7=14 см СВ = 2*5 = 10 см.
2 случай) Точки расположены А В С Значит АВ + ВС = АС
24 + 5х = 7х или 24 = 7х-5х или 24 = 2х или х = 12
Значит АС = 12*7 = 84 см ВС = 12*5 = 60 см
Итак в первом случае радиусы равны 14 см и 10 см; во втором случае 84 см и 60 см
Теорема. Центр окружности, вписанной в треугольник, является точкой пересечения его биссектрис.
Доказательство. Пусть ABC – данный треугольник, O – центр вписанной в него окружности, D, E и F – точки касания окружности со сторонами. Прямоугольные треугольники AOD и AOE равны по гипотенузе и катету. У них гипотенуза AO общая, а катеты OD и OE равны как радиусы. Из равенства треугольников следует равенство углов OAD и OAE. А это значит, что точка O лежит на биссектрисе треугольника, проведённой из вершины A. Точно так же доказывается, что точка O лежит на двух других биссектрисах треугольника. Теорема доказана.
Объяснение:
Так как окружности касаются а радиусы перпендикулярны касательной, то они лежат на одной прямой. Значит есть два случая 1) точка касания между радиусами 2) радиусы с одной стороны от точки
Обозначит А - центр первой окружности В - центр второй окружности С - точка касания. АВ = 24 см
Известно . Что АС : СВ = 7 : 5 Пусть коэффициент пропорциональности равен х, тогда АС = 7х, ВС = 5х
1 случай) точки расположены в таком порядке на прямой А С В
Значит АС + СВ = АВ или 7х+5х=24 или 12х = 24 или х=2
Значит АС = 2*7=14 см СВ = 2*5 = 10 см.
2 случай) Точки расположены А В С Значит АВ + ВС = АС
24 + 5х = 7х или 24 = 7х-5х или 24 = 2х или х = 12
Значит АС = 12*7 = 84 см ВС = 12*5 = 60 см
Итак в первом случае радиусы равны 14 см и 10 см; во втором случае 84 см и 60 см
Объяснение: