а) Треугольники АНС и ВНС прямоугольные, поэтому MH=0,5*АС=СМ и NH=0,5*CB=CN. Значит, треугольники MCN и MHN равны по трём сторонам, откуда <MHN = <MCN = 90 градусов.
б) В прямоугольном треугольнике АВС имеем: CH=√АН*ВН=√2592.
В прямоугольных треугольниках МНР и MCQ с общим углом CMH получаем:
МН/МР=МС/МQ=сos<СМН,
поэтому треугольники МНС и MРQ подобны с коэффициентом подобия сos<СМН.
Площадь S треугольника МНС равна половине площади треугольника АНС, то есть S=(АН*СН)/4=72*√2592/4=18*√2592=648*√2
б) В прямоугольном треугольнике АВС имеем: CH=√АН*ВН=√2592.
В прямоугольных треугольниках МНР и MCQ с общим углом CMH получаем:
МН/МР=МС/МQ=сos<СМН,
поэтому треугольники МНС и MРQ подобны с коэффициентом подобия сos<СМН.
Площадь S треугольника МНС равна половине площади треугольника АНС, то есть S=(АН*СН)/4=72*√2592/4=18*√2592=648*√2
Найдём сos<СМН:
сos<СМН=сos(2<САН)=2cos^2<САН-1=2AH^2/АС^2-1=2AH^2/(АН^2+CH^2)-1=0,33.
Значит, площадь треугольника MPQ равна S/сos^2<СМН=5832√2
Ответ: б) 5832√2.
Задача решена Пользователем Рисадес Хорошист
Исправлена неточность в последнем действии.
Шар может быть вписан в цилиндр только тогда, когда этот цилиндр правильный, т.е. когда его осевое сечение является квадратом.
Радиус основания цилиндра равен радиусу шара и равен r.
Высота цилиндра равна диаметру основания и равна 2 r.
Полная площадь поверхности складывается из площади двух оснований и площади боковой поверхности:
2*πr² + 2πr*2r = 6πr²
Площадь шара = 4πr²
Площадь цилиндра больше площади шара в
6πr² : 4πr² = 1,5 (раза)
Площадь полной поверхности шара
111 : 1,5 = 74 ( единиц площади)