АС=√7см
Объяснение:
Дано:
ABCD- трапеция
АВ=CD=√3см
BC=1см
<ABC=150°
АС=?
___________
В равнобокой трапеции углы при основаниях равны.
<АВС=<ВСD
<BAD=<CDA
В трапеции сумма углов прилежащих к боковой стороне равна 180°
<СDA=180°-<BCD=180°-150°=130°
Проведём две высоты СК и ВМ.
АМ=KD
∆CKD- прямоугольный.
sin<CDK=CK/CD
sin30°=1/2
1/2=CK/√3
CK=√3/2 см.
cos<CDK=KD/CD
cos30°=√3/2
√3/2=KD/√3
KD=√3√3/2=1,5см.
ВС=МК=1см
АК=АМ+МК=1,5+1=2,5см
∆АСК- прямоугольный треугольник
По теореме Пифагора
АС²=АК²+СК²=2,5²+(√3/2)²=6,25+0,75=7см
В объяснении.
1. Сумма внутренних углов выпуклого четырехугольника равна 360 градусов.
Пусть коэффициент пропорциональности равен х.
Тогда х+2х+3х+4х = 360° => х = 36°.
Больший угол равен 4х = 144°.
2. Сумма внутренних углов выпуклого четырехугольника равна 360 градусов.
Тогда х+2х+2х+4х = 360° => х = 40°.
Меньший угол равен 4х = 40°.
3. Площадь квадрата равна площади прямоугольника: 4*9 = 36 =>
Сторона квадрата равна √36 = 6 ед.
4. Площадь прямоугольника равна х*(х+2) = 24. Тогда
х² + 2х - 24 = 0. Решаем квадратное уравнение. => x = 6. (второй корень отрицательный)
Тогда большая сторона равна 6 + 2 = 8 ед.
5. Смотри рисунок.
6. Уравнение окружности:
(Х - Хц)² + (Y-Yц)² = R² Тогда
а) Координаты центра: Ц(-5;2) Радиус = 4 ед.
б) Координаты центра: Ц(0;-3) Радиус = 3 ед.
АС=√7см
Объяснение:
Дано:
ABCD- трапеция
АВ=CD=√3см
BC=1см
<ABC=150°
АС=?
___________
В равнобокой трапеции углы при основаниях равны.
<АВС=<ВСD
<BAD=<CDA
В трапеции сумма углов прилежащих к боковой стороне равна 180°
<СDA=180°-<BCD=180°-150°=130°
Проведём две высоты СК и ВМ.
АМ=KD
∆CKD- прямоугольный.
sin<CDK=CK/CD
sin30°=1/2
1/2=CK/√3
CK=√3/2 см.
cos<CDK=KD/CD
cos30°=√3/2
√3/2=KD/√3
KD=√3√3/2=1,5см.
ВС=МК=1см
АК=АМ+МК=1,5+1=2,5см
∆АСК- прямоугольный треугольник
По теореме Пифагора
АС²=АК²+СК²=2,5²+(√3/2)²=6,25+0,75=7см
АС=√7см
В объяснении.
Объяснение:
1. Сумма внутренних углов выпуклого четырехугольника равна 360 градусов.
Пусть коэффициент пропорциональности равен х.
Тогда х+2х+3х+4х = 360° => х = 36°.
Больший угол равен 4х = 144°.
2. Сумма внутренних углов выпуклого четырехугольника равна 360 градусов.
Пусть коэффициент пропорциональности равен х.
Тогда х+2х+2х+4х = 360° => х = 40°.
Меньший угол равен 4х = 40°.
3. Площадь квадрата равна площади прямоугольника: 4*9 = 36 =>
Сторона квадрата равна √36 = 6 ед.
4. Площадь прямоугольника равна х*(х+2) = 24. Тогда
х² + 2х - 24 = 0. Решаем квадратное уравнение. => x = 6. (второй корень отрицательный)
Тогда большая сторона равна 6 + 2 = 8 ед.
5. Смотри рисунок.
6. Уравнение окружности:
(Х - Хц)² + (Y-Yц)² = R² Тогда
а) Координаты центра: Ц(-5;2) Радиус = 4 ед.
б) Координаты центра: Ц(0;-3) Радиус = 3 ед.