Відрізки АК і ВО відповідно медіана і висота гострокутного трикутника ABC. Відомо, що АО=5, а кут КСА у два рази більший ніж кут КАС. Знайдіть довжину сторони ВС.
АВСД - параллелограмм , ДР - биссектриса, ∠С=45° ,
ДР пересекает АВ в точке Р , а ВС в точке М .
АР=10 см , ВР=2 см ⇒ АВ=10-2=8 см , СД=АВ=8 см как противоположные стороны параллелограмма .
ДР - биссектриса ⇒ ∠СДР=∠АДР .
∠АДР=∠СМД как накрест лежащие углы при АД || ВС и секущей ДР .
В ΔСМД два угла равны ⇒ ΔСМД - равнобедренный и СМ=СД=8 см ∠СМД=(180°-45°):2=67,5°
∠ВМР=∠СМД=67,5° как вертикальные .
В ΔВМР угол ∠МВР=45° , так как ∠МВР=∠МСД=45° как накрест лежащие углы при АР || СД и секущей ВС .
Но тогда в ΔВМР: ∠ВРМ=180°-45°-67,5°=67,5° , то есть ΔВМР есть два равных угла: ∠ВМР=∠ВРМ=67,5° , тогда этот треугольник равнобедрен-ный и ВМ=ВР=2 см .
ответ: Р=36 см .
АВСД - параллелограмм , ДР - биссектриса, ∠С=45° ,
ДР пересекает АВ в точке Р , а ВС в точке М .
АР=10 см , ВР=2 см ⇒ АВ=10-2=8 см , СД=АВ=8 см как противоположные стороны параллелограмма .
ДР - биссектриса ⇒ ∠СДР=∠АДР .
∠АДР=∠СМД как накрест лежащие углы при АД || ВС и секущей ДР .
В ΔСМД два угла равны ⇒ ΔСМД - равнобедренный и СМ=СД=8 см ∠СМД=(180°-45°):2=67,5°
∠ВМР=∠СМД=67,5° как вертикальные .
В ΔВМР угол ∠МВР=45° , так как ∠МВР=∠МСД=45° как накрест лежащие углы при АР || СД и секущей ВС .
Но тогда в ΔВМР: ∠ВРМ=180°-45°-67,5°=67,5° , то есть ΔВМР есть два равных угла: ∠ВМР=∠ВРМ=67,5° , тогда этот треугольник равнобедрен-ный и ВМ=ВР=2 см .
Тогда ВС=СМ+ВМ=8 +2 =10 см , АД=ВС=10 см
Периметр Р=10+10+8+8=36 см .
периметры относятся как коэффициент подобия,
площади относятся как квадрат коэффициента подобия...
S1 / S2 = 25 / 49
S1 = 25×S2 / 49
S2 ---большая площадь
S2 - S1 = 864
S2 - 25×S2 / 49 = 864
49×S2 - 25×S2 = 864×49
24×S2 = 24×36×49
S2 = 36*49 = 1764
S1 = 25*36*49 / 49 = 900
k = 2 : 3 коэффициент подобия
S₁ : S₂ = 2² : 3²
S₁ : (130 - S₂) = 4 : 9
По основному свойству пропорции, произведение крайних = произведению средних
9S₁ = 4 (130 - S₁)
13S₁ = 520
S₁ = 40 (cм²) - площадь меньшего многоугольника
S₂ = 130 - 40 = 90 (cм²) - площадь бОльшего многоугольника