Любые две из трех прямых, соединяющих середины отрезков AB и CD; AC и BD; AD и BC могут быть:
а) параллельны одной из этих прямых.
Через две параллельные прямые можно провести плоскость, притом только одну.
б) пересекаться:
Через две пересекающиеся прямые можно провести плоскость, притом только одну.
В рисунке приложения даны некоторые из получающихся пар параллельных и пересекающихся прямых:
а) pd и mn как средние линии треугольников АСD и BCD параллельны AD; kp и no параллельны основанию АС треугольников АDC и АВС.
б) km и mn, mn и no пересекаются.
Найти расстояние между прямыми L1 и L2
L1: 4x-3y-12=0.
L2: 4x-3y+20=0.
Решение.
Прямая L1 имеет свободный член C1=-12 и направляющий вектор
n1={-В1, А1}={3; 4}.
Прямая L2 имеет свободный член C2=20 и направляющий вектор
n2={-В2, А2}={3; 4}.
Так как нормальные векторы прямых L1 и L2 совпадают, то расстояние между ними можно вычислить формулой:
d = | C 1 − C 2 | / √(A ² + B²). (1)
Подставим значения A1, B1, C1, C2 в (1):
d = | − 12 − 20 | / (√ ( 4 ² +(-3) ²) = 35/5 = 6,4
Расстояние между прямыми равно d=6,4.
Любые две из трех прямых, соединяющих середины отрезков AB и CD; AC и BD; AD и BC могут быть:
а) параллельны одной из этих прямых.
Через две параллельные прямые можно провести плоскость, притом только одну.
б) пересекаться:
Через две пересекающиеся прямые можно провести плоскость, притом только одну.
В рисунке приложения даны некоторые из получающихся пар параллельных и пересекающихся прямых:
а) pd и mn как средние линии треугольников АСD и BCD параллельны AD; kp и no параллельны основанию АС треугольников АDC и АВС.
б) km и mn, mn и no пересекаются.
Найти расстояние между прямыми L1 и L2
L1: 4x-3y-12=0.
L2: 4x-3y+20=0.
Решение.
Прямая L1 имеет свободный член C1=-12 и направляющий вектор
n1={-В1, А1}={3; 4}.
Прямая L2 имеет свободный член C2=20 и направляющий вектор
n2={-В2, А2}={3; 4}.
Так как нормальные векторы прямых L1 и L2 совпадают, то расстояние между ними можно вычислить формулой:
d = | C 1 − C 2 | / √(A ² + B²). (1)
Подставим значения A1, B1, C1, C2 в (1):
d = | − 12 − 20 | / (√ ( 4 ² +(-3) ²) = 35/5 = 6,4
Расстояние между прямыми равно d=6,4.