d диаметр основания конуса l образующая конуса h высота конуса d = l = 2 => осевое сечения конуса - правильный треугольник со сторонами = d 1) Площадь осевого сечения конуса s: s = h*d h = d² - (d/2)² = d² - d²/4 = 3d²/4 = 3 s = h*d = 3*2 = 6 > 1,5 ответ: не может быть = 1,5 2) сечение, параллельное основанию, площадь которого равна 1 площадь сечения, параллельное основанию = от 0 до площади основания площадь основания s: s = πr² = πd²/4 = π*2²/4 = π 1∈]0;π[ ответ: может = 1 3) Наибольшая площадь треугольного сечения s: s = 6 > 2 ответ: наибольшая площадь треугольного сечения не равна 2 4) сечения конуса площадь осевого сечения = 6 площадь основания = π ответ: не существует сечение, площадь которого = 18 5) Расстояние от центра основания конуса до образующей = (d/2)*sin60 = (2/2)√3/2 = √3/2 ответ: расстояние от центра основания конуса до образующей = √3/2 6) расстояние от вершины конуса до основания это высота h = 3 ответ: не равно 2
l образующая конуса
h высота конуса
d = l = 2 => осевое сечения конуса - правильный треугольник
со сторонами = d
1) Площадь осевого сечения конуса s:
s = h*d
h = d² - (d/2)² = d² - d²/4 = 3d²/4 = 3
s = h*d = 3*2 = 6 > 1,5
ответ: не может быть = 1,5
2) сечение, параллельное основанию, площадь которого равна 1
площадь сечения, параллельное основанию = от 0 до площади основания
площадь основания s:
s = πr² = πd²/4 = π*2²/4 = π
1∈]0;π[
ответ: может = 1
3) Наибольшая площадь треугольного сечения s:
s = 6 > 2
ответ: наибольшая площадь треугольного сечения не равна 2
4) сечения конуса
площадь осевого сечения = 6
площадь основания = π
ответ: не существует сечение, площадь которого = 18
5) Расстояние от центра основания конуса до образующей
= (d/2)*sin60 = (2/2)√3/2 = √3/2
ответ: расстояние от центра основания конуса до образующей = √3/2
6) расстояние от вершины конуса до основания
это высота h = 3
ответ: не равно 2
1) Так как CL - биссектриса прямого угла С, то
∠ACL = ∠LCB = 90° : 2 = 45°;
2) ∠MCB = ∠LCB - ∠LCM = 45° - 15° = 30°
3) Используем свойство : медиана CM, опущенная на гипотенузу прямоугольного треугольника AB, равна половине гипотенузы.
АМ = МВ = СМ.
4) ΔСМВ - равнобедренный, так как СМ=МВ, значит углы при основании равнобедренного треугольника тоже равны:
∠СМВ = ∠МВС = 30°.
5) ∠САВ = 90° - 30° = 60°;
6) ΔАНС - прямоугольный (с прямым углом Н), так как СН - высота.
∠АСН = 90- 60=30°.
7) ∠LCH = ∠ACL - ∠ACH = 45° - 30° = 15°/
ответ: величина угла LCH = 15°.