Відрізок АВ перетинає площину альфа в точці О. Через кінці відрізка А іВ проведено паралельні прямі АА1 і ВВ1, які перетинають площину в точках А1 і В1. Знайдіть довжину відрізка АВ, якщо АА1:ВВ1 = 2:3 і відрізок ОА на 3см коротший, ніж відрізок ВО НАПИСАТЬ ТОЛЬКО ОТВЕТ
Даны координаты точек : А (2;24), В (14;16), С (2;-16).
а) Середина АС - точка М((2+2)/2=2; (24-16)/2=4) = (2; 4).
Уравнение ВМ: (х - 14)/(2 - 14)) = (у - 16)/(4 - 16),
(х - 14)/(-12) = (у - 16)/(-12),
х - 14 = у - 16
х - у + 2 = 0
у = х + 2.
б) Высота из точки С на АВ - перпендикуляр СН.
Составляем уравнение стороны АВ:
АВ: (х - 2)/(14-2) = (у - 24)/(16-24),
(х - 2)/12 = (у - 24)/(-8), сократим знаменатели на 4:
(х - 2)/3 = (у - 24)/(-2),
-2х + 4 = 3у - 72,
2х + 3у - 76 = 0,
у = (-2/3)х + (76/3).
Угловой коэффициент высоты СН, перпендикулярной к стороне АВ равен:
к(СН) = -1/(к(АВ) = -1/(-2/3) = 3/2.
Уравнение имеет вид у = (3/2)х + в.
Для определения в подставим координаты точки С.
-16 = (3/2)*2 + в,
в = -16 - 3 = -19.
Получаем уравнение СН: у = (3/2)х - 19.
Координаты точки пересечения высоты СН и медианы ВМ находим, приравнивая уравнения этих прямых.
(3/2)х - 19 = х + 2,
(1/2)х = 21, отсюда находим х = 21*2 = 42, у = 42 + 2 = 44.
ответ: точка пересечения СН и ВМ (42; 44).
Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α.
Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору
АЕ=√(AD²-DE²)=√(36²-18²)=18√3.
Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°.
Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²