Відрізок CD не має спільних точок із площиною ү. Прямі СА і DB перпендикулярні до площини у i перетинають її уточках А і В. Знайдіть AB, якщо сD = AC = 10 см, BD = 2 см.
Свойства хорд Диаметр (радиус), перпендикулярный к хорде, делит эту хорду и обе стягиваемые ею дуги пополам. Верна и обратная теорема: если диаметр (радиус) делит пополам хорду, то он перпендикулярен этой хорде. Дуги, заключенные между параллельными хордами, равны. Если две хорды окружности, AB и CD пересекаются в точке M, то произведение отрезков одной хорды равно произведению отрезков другой хорды: AM•MB = CM•MD.
Если хорды равноудалены от центра окружности, то они равны. Если хорды равны, то они равноудалены от центра окружности. Большая из двух хорд находится ближе к центру окружности. Наибольшая хорда является диаметром. Если диаметр делит хорду пополам, то он перпендикулярен ей. Если диаметр перпендикулярен хорде, то он делит ее пополам . Равные дуги стягиваются равными хордами. Дуги, заключенные между параллельными хордами, равны. Все вписанные углы, опирающиеся на одну и ту же дугу, раны. Все вписанные углы, опирающиеся на одну и ту же хорду, вершины которых лежат по одну сторону от этой хорды, равны. Все вписанные углы, опирающиеся на диаметр, прямые. Любая пара углов, опирающихся на одну и ту же хорду, вершины которых лежат по разные стороны хорды, составляют в сумме 180.
Осевое сечение цилиндра прямоугольник. Площадь сечения будет равна произведению длины хорды на высоту. Найдем длину хорды. Соединим центр окружности с точками пересечения окружности и хорды, получим равнобедренный треугольник, (боковые стороны – радиусы), так как угол при вершине этого треугольника равен 120°, то углы при основании 30°, проведем в треугольнике высоту, получим прямоугольный треугольник, из него найдем половину хорды, 2√3 ·cos 30° = 2√3 ·√3 /2 =3 (см), вся хорда 3 +3 = 6 (см). Отсюда S = 6·5 =30 (смˆ2)
Свойства хорд
Диаметр (радиус), перпендикулярный к хорде, делит эту хорду и обе стягиваемые ею дуги пополам. Верна и обратная теорема: если диаметр (радиус) делит пополам хорду, то он перпендикулярен этой хорде.
Дуги, заключенные между параллельными хордами, равны.
Если две хорды окружности, AB и CD пересекаются в точке M, то произведение отрезков одной хорды равно произведению отрезков другой хорды: AM•MB = CM•MD.
Если хорды равноудалены от центра окружности, то они равны.
Если хорды равны, то они равноудалены от центра окружности.
Большая из двух хорд находится ближе к центру окружности.
Наибольшая хорда является диаметром.
Если диаметр делит хорду пополам, то он перпендикулярен ей.
Если диаметр перпендикулярен хорде, то он делит ее пополам .
Равные дуги стягиваются равными хордами.
Дуги, заключенные между параллельными хордами, равны.
Все вписанные углы, опирающиеся на одну и ту же дугу, раны.
Все вписанные углы, опирающиеся на одну и ту же хорду, вершины которых лежат по одну сторону от этой хорды, равны.
Все вписанные углы, опирающиеся на диаметр, прямые.
Любая пара углов, опирающихся на одну и ту же хорду, вершины которых лежат по разные стороны хорды, составляют в сумме 180.
Осевое сечение цилиндра прямоугольник. Площадь сечения будет равна произведению длины хорды на высоту. Найдем длину хорды. Соединим центр окружности с точками пересечения окружности и хорды, получим равнобедренный треугольник, (боковые стороны – радиусы), так как угол при вершине этого треугольника равен 120°, то углы при основании 30°, проведем в треугольнике высоту, получим прямоугольный треугольник, из него найдем половину хорды, 2√3 ·cos 30° = 2√3 ·√3 /2 =3 (см), вся хорда 3 +3 = 6 (см). Отсюда S = 6·5 =30 (смˆ2)