Відрізок cm — медіана трикутника abc, зображеного на рисунку, відрізок de — середня лінія трикутника мвс. чому дорівнює площа чотирикутника mdec, якщо площа трикутника авсдорівнює 48 см^2?
Если единственный известный угол равен 90°, а в условиях приведены длины двух сторон треугольника (b и c), определите, которая из них является гипотенузой - это должна быть сторона больших размеров. Затем воспользуйтесь теоремой Пифагора и рассчитайте длину неизвестного катета (a) извлечением квадратного корня из разности квадратов длин большей и меньшей сторон: a = √(c²-b²). Впрочем, можно не выяснять, которая из сторон является гипотенузой, а для извлечения корня использовать модуль разности квадратов их длин.
Зная длину гипотенузы (c) и величину угла (α), лежащего напротив нужного катета (a), используйте в расчетах определение тригонометрической функции синус через острые углы прямоугольного треугольника. Этого определение утверждает, что синус известного из условий угла равен соотношению между длинами противолежащего катета и гипотенузы, а значит, для вычисления искомой величины умножайте этот синус на длину гипотенузы: a = sin(α)*с.
Если кроме длины гипотенузы (с) дана величина угла (β), прилежащего к искомому катету (a), используйте определение другой функии - косинуса. Оно звучит точно так же, а значит, перед вычислением просто замените обозначения функции и угла в формуле из предыдущего шага: a = cos(β)*с.4Функция котангенс с вычислением длины катета (a), если в условиях предыдущего шага гипотенуза заменена вторым катетом (b). По определению величина этой тригонометрической функции равна соотношению длин катетов, поэтому умножьте котангенс известного угла на длину известной стороны: a = ctg(β)*b.5Тангенс используйте для вычисления длины катета (a), если в условиях есть величина угла (α), лежащего в противоположной вершине треугольника, и длина второго катета (b). Согласно определению тангенс известного из условий угла - это отношение длины искомой стороны к длине известногокатета, поэтому перемножьте величину этой тригонометрической функции от заданного угла на длину известной стороны: a = tg(α)*b.
1. Если в четырёхугольник можно вписать окружность, то у него суммы длин противоположных сторон равны: AB+CD=BC+AD
Так как боковые стороны равны, то можно найти их длину:
AB=CD=BC+AD2=1+92=5 см.
2. Проводим высоту трапеции из вершины B к основанию AD. Так как трапеция — равнобедренная, и известны длины обоих оснований, то можно вычислить длину AG:
AG=AD−BC2=9−12=4 см.
3. Так как ΔABG — прямоугольный, то по теореме Пифагора находим высоту трапеции:
BG=AB2−AG2−−−−−−−−−−√=52−42−−−−−−√=25−16−−−−−−√=9√=3 см
4. Высота трапеции равна диаметру вписанной окружности. BG=EF=2R, поэтому радиус окружности равен:
Зная длину гипотенузы (c) и величину угла (α), лежащего напротив нужного катета (a), используйте в расчетах определение тригонометрической функции синус через острые углы прямоугольного треугольника. Этого определение утверждает, что синус известного из условий угла равен соотношению между длинами противолежащего катета и гипотенузы, а значит, для вычисления искомой величины умножайте этот синус на длину гипотенузы: a = sin(α)*с.
Если кроме длины гипотенузы (с) дана величина угла (β), прилежащего к искомому катету (a), используйте определение другой функии - косинуса. Оно звучит точно так же, а значит, перед вычислением просто замените обозначения функции и угла в формуле из предыдущего шага: a = cos(β)*с.4Функция котангенс с вычислением длины катета (a), если в условиях предыдущего шага гипотенуза заменена вторым катетом (b). По определению величина этой тригонометрической функции равна соотношению длин катетов, поэтому умножьте котангенс известного угла на длину известной стороны: a = ctg(β)*b.5Тангенс используйте для вычисления длины катета (a), если в условиях есть величина угла (α), лежащего в противоположной вершине треугольника, и длина второго катета (b). Согласно определению тангенс известного из условий угла - это отношение длины искомой стороны к длине известногокатета, поэтому перемножьте величину этой тригонометрической функции от заданного угла на длину известной стороны: a = tg(α)*b.
AB+CD=BC+AD
Так как боковые стороны равны, то можно найти их длину:
AB=CD=BC+AD2=1+92=5 см.
2. Проводим высоту трапеции из вершины B к основанию AD. Так как трапеция — равнобедренная, и известны длины обоих оснований, то можно вычислить длину AG:
AG=AD−BC2=9−12=4 см.
3. Так как ΔABG — прямоугольный, то по теореме Пифагора находим высоту трапеции:
BG=AB2−AG2−−−−−−−−−−√=52−42−−−−−−√=25−16−−−−−−√=9√=3 см
4. Высота трапеции равна диаметру вписанной окружности.
BG=EF=2R, поэтому радиус окружности равен:
R=BG2=32=1,5 см.