Відрізок dc — перпендикуляр до площини прямокутного трикутника abc (∠acb = 90°), dc = 9 см, ac = 15 см, bc = 20 см. відрізок de — перпендикуляр, опущений із точки d на пряму ab. знайдіть кут між прямою de та площиною abc. з малюнком будь-ласка.
а)Даны стороны треугольника АВ и АС и угол между ними.
На произвольной прямой отложим отрезок, равный длине стороны АС, отметим на нём точки А и С.
Из вершины А заданного угла проведем полуокружность произвольного радиуса и сделаем насечки М и К на его сторонах. АМ=АК= радиусу проведенной окружности.
Из т.А на отложенном отрезке тем же раствором циркуля проведем полуокружность. Точку пересечения с АС обозначим К1.
От К1 циркулем проведем полуокружность радиусом, равным длине отрезка КМ, соединяющим стороны заданного угла.
Эта полуокружность пересечется с первой. Через точку пересечения проведем от т. А луч и отложим на нем отрезок, равный данной стороне АВ, отметим точку В. . Соединим В и С.
Искомый треугольник построен.
б) Биссектриса проводится так же, как проводится срединный перпендикуляр к отрезку.
Из точек, взятых на сторонах угла на равном расстоянии от его вершины А ( отмеряем циркулем) проводим полуокружности равного радиуса так, чтобы они пересеклись. Через точки их пересечения и А проводим луч. Треугольник АМ1К! - равнобедренный по построению, АЕ - перпендикулярен М1К1 и делит его пополам.
Треугольники АЕМ1 и АЕК1 равны по гипотенузе и общему катету. Поэтому их углы при А равны. АЕ - биссектриса.https://ru-static.z-dn.net/files/d75/da87bd0566b405886163e8b871868042.png
а)Даны стороны треугольника АВ и АС и угол между ними.
На произвольной прямой отложим отрезок, равный длине стороны АС, отметим на нём точки А и С.
Из вершины А заданного угла проведем полуокружность произвольного радиуса и сделаем насечки М и К на его сторонах. АМ=АК= радиусу проведенной окружности.
Из т.А на отложенном отрезке тем же раствором циркуля проведем полуокружность. Точку пересечения с АС обозначим К1.
От К1 циркулем проведем полуокружность радиусом, равным длине отрезка КМ, соединяющим стороны заданного угла.
Эта полуокружность пересечется с первой. Через точку пересечения проведем от т. А луч и отложим на нем отрезок, равный данной стороне АВ, отметим точку В. . Соединим В и С.
Искомый треугольник построен.
б) Биссектриса проводится так же, как проводится срединный перпендикуляр к отрезку.
Из точек, взятых на сторонах угла на равном расстоянии от его вершины А ( отмеряем циркулем) проводим полуокружности равного радиуса так, чтобы они пересеклись. Через точки их пересечения и А проводим луч. Треугольник АМ1К! - равнобедренный по построению, АЕ - перпендикулярен М1К1 и делит его пополам.
Треугольники АЕМ1 и АЕК1 равны по гипотенузе и общему катету. Поэтому их углы при А равны. АЕ - биссектриса.https://ru-static.z-dn.net/files/d75/da87bd0566b405886163e8b871868042.png
Объяснение:
1) Знаем, что объём конуса равен трети произведения высоты на площадь основания.
V конуса = 1/3 * H * S основ. = Н/3 * Пи * R^2, где
Н - высота конуса, R - радиус окружности основания.
2) Знаем соотношение высоты Н и радиуса R: Н/R = 3/2, откуда
3) Н=3*R/2;
4) подставим 3) в 1) V=(3*R/2)/3 * Пи * R^2 =(R/2) * Пи * R^2 = Пи*R^3/2; V=Пи*R^3/2;
5) Знаем, что объём V=48*Пи. Подставим значение 4) в 5) :
48*Пи=Пи*R^3/2; Сократим на Пи/2: 48*2=R^3; Откуда R=куб. √96=2*куб. √12;
6) Подставим значение 5) в 3) :
Н=3*R/2=3*(2*куб. √12)/2=3*куб. √12;
7) По теореме Пифагора найдём величину образующей конуса (Обр.) :
Oбр. = √(Н^2+R^2) = √((3*куб. √12)^2+(2*куб. √12)^2)=√(13*(куб. √12)^2)=(куб. √12)*√13;
8) Найдём длину окружности основания (Дл. Окр.) ;
Дл. Окр. =2*Пи*R; Дл. Окр. =2*Пи*(2*куб. √12)=4*Пи*куб. √12;
9) Найдём площадь основания Sосн. =Пи*R^2=Пи*(2*куб. √12)^2=4*Пи*(куб. √12)^2;
10) Найдём площадь боковой поверхности: Sбок. =0,5*Обр. *Дл. Окр. =
Sбок. =0,5*(куб. √12)*√13*4*Пи*кубю√12=2*Пи*√13*(куб. √12)^2;
11) Найдём площадь полной поверхности конуса: Sполн. =Sосн. +Sбок. ;
Sполн. =4*Пи*(куб. √12)^2+2*Пи*√13*(куб. √12)^2=2*Пи*(2+√13)*(куб. √12)^2=
=2*3,14*(2+3,61)*5,241=184,6;
Где-то так…
Желаю здравствовать!
Объяснение: