Відрізок FD лежить у площині a , кінці відрізка BK належать паралельним площинам Альфа і Бета побудуйте лінії перетину площини Бета з площинами KFD і KDB
1. сначала рисуем основание и от одного из его концов, с циркуля, в сторону направления второй стороны, рисуем полукруг, равный по радиусу этой известной стороне. 2. Затем с циркуля с двух концов основания восстанавливаем перпендикуляры к самому основанию (как это делать Вы знаете). 3. С линейки отмеряем известную высоту на обоих перпендикулярах, начиная от основания. 4 Соединяем вершины высот прямой линией с линейки. Полученная линия параллельна основанию. 5. Место пересечения этой линии и полуокружности - это вершина нужного треугольника. Соединим её с концами основания. 6. С циркуля нарисуем второй полукруг к вершине от другого конца основания так, чтобы оба полукруга пересекались сверху и снизу. Соединим точки их пересечения. Получится высота треугольника.
Отложим отрезок длиной 1
к его концу отложим перпендикуляр длиной 1
Соединив эти два отрезка получим отрезок длиной корень с 2
К последнему отрезку построим перпендикуляр длиной 1
И соединим два последних отрезка итоговый будет длиной корень с 3
Потом опять к последнему отрезку проведем перпендикулярный отрезок длиной 1. Соединим концы двух последних отрезков, получим отрезок длиной корень с 4
И еще раз к последнему отрезку к концу проведем перпендикуляр и соединим последние два отрезка - это и будет отрезок длиной корень 5
2. Затем с циркуля с двух концов основания восстанавливаем перпендикуляры к самому основанию (как это делать Вы знаете).
3. С линейки отмеряем известную высоту на обоих перпендикулярах, начиная от основания.
4 Соединяем вершины высот прямой линией с линейки. Полученная линия параллельна основанию.
5. Место пересечения этой линии и полуокружности - это вершина нужного треугольника. Соединим её с концами основания.
6. С циркуля нарисуем второй полукруг к вершине от другого конца основания так, чтобы оба полукруга пересекались сверху и снизу. Соединим точки их пересечения. Получится высота треугольника.