Відрізок, що сполучає центр верхньої основи циліндра з точкою кола нижньої основи, дорівнює 8 см і утворює з площиною нижньої основи кут 60. Знайти об’єм циліндра, площу повної поверхні.(по можливості з поясненням
1) В данном случае диагональ квадрата - это и есть диаметр описанной окружности и равен двум радиусам:
2) В этом случае, наоборот, сторона квадрата - это диаметр вписанной окружности, а радиус равен половине диаметра (или стороны): см
3) Смотрим третий рисунок: ABCD - прямоугольник, АВ=15, О - точка пересечения диагоналей, ∠АОВ=60° Известно, что диагонали прямоугольника равны и точкой пересечения делятся пополам, значит АО=ОВ, то есть ΔАОВ - равнобедренный. Но если угол при вершине равен 60°, то и углы при основании равны: Значит ΔАОВ - равносторонний, АО=ОВ=ВС=15 см. Радиус описанной окружности в данном случае равен половине диагонали, то есть АО или ОВ: см
∠NMK=30° ∠KMP=30° так как МК- биссектриса угла М ∠NKM=∠KMP=30° - внутренние накрест лежащие при параллельных NK и MP и секущей МК
Треугольник MNK - равнобедренный NM=NK=KP=8 см
Проводим высоты NF и KE на сторону МР
Из прямоугольного треугольника MNF: ∠ M =60° ∠MNF=30° MF=4 см ( катет против угла в 30° равен половине гипотенузы) По теореме Пифагора NF²=MN²-FM²=8²-4²=64-18=48 NF=4√3 см h ( трапеции)=4√3 см
2) В этом случае, наоборот, сторона квадрата - это диаметр вписанной окружности, а радиус равен половине диаметра (или стороны):
см
3) Смотрим третий рисунок:
ABCD - прямоугольник, АВ=15, О - точка пересечения диагоналей, ∠АОВ=60°
Известно, что диагонали прямоугольника равны и точкой пересечения делятся пополам, значит АО=ОВ, то есть ΔАОВ - равнобедренный. Но если угол при вершине равен 60°, то и углы при основании равны:
Значит ΔАОВ - равносторонний, АО=ОВ=ВС=15 см.
Радиус описанной окружности в данном случае равен половине диагонали, то есть АО или ОВ:
см
∠M+∠N=180°⇒ ∠M+2·∠M=180° ⇒3·∠M=180°
∠M=60°
∠N=30°
∠NMK=30° ∠KMP=30° так как МК- биссектриса угла М
∠NKM=∠KMP=30° - внутренние накрест лежащие при параллельных NK и MP и секущей МК
Треугольник MNK - равнобедренный
NM=NK=KP=8 см
Проводим высоты NF и KE на сторону МР
Из прямоугольного треугольника MNF:
∠ M =60°
∠MNF=30°
MF=4 см ( катет против угла в 30° равен половине гипотенузы)
По теореме Пифагора
NF²=MN²-FM²=8²-4²=64-18=48
NF=4√3 см
h ( трапеции)=4√3 см
NF=EP=4 см
MP=MF+FE+EP=4+8+4=16 см
S( трапеции)=(NK+MP)·h/2=(8+16)·4√3/2=48√3 кв. см
ME=MF+FE=4+8=12
ME:EP=12:4=3:1