В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
QFARRO
QFARRO
06.12.2021 00:05 •  Геометрия

Відрізок ВД-бісектриса трикутника АВС, АВ=28см, ВС=20см, АС=36см. Знайти відрізки АД і СД..

Показать ответ
Ответ:
мама1036
мама1036
07.01.2020 18:16

Медианы треугольника пересекаются в одной точке.

Высоты треугольника пересекаются в одной точке.

В данном треугольнике эти точки совпадают - медианы являются также высотами.

Совпадение медианы и высоты к основанию - признак равнобедренного треугольника.

Таким образом данный треугольник является равнобедренным относительно любой стороны, то есть равносторонним.

O - точка пересечения медиан, AA1 - медиана, A1 - середина BC.

O - точка пересечения высот (ортоцентр), AA1 проходит через точку O => AA1 - высота, AA1⊥BC

∠AA1B=∠AA1C=90 (AA1 - высота)

BA1=CA1 (AA1 - медиана)

△BAA1=△CAA1 (по двум катетам, AA1 - общий) => AB=AC

(Доказали: Если медиана треугольника совпадает с его высотой, то треугольник равнобедренный.)

Аналогично: BB1 - медиана и высота к стороне AC => AB=BC

AB=AC=BC, △ABC - равносторонний


В треугольнике точка пересечения медиан совпадает с ортоцентром. Докажите, что данный треугольник ра
0,0(0 оценок)
Ответ:
domna0404
domna0404
08.02.2022 01:53

Объяснение:

Бино́м Нью́то́на — формула для разложения на отдельные слагаемые целой неотрицательной степени суммы двух переменных, имеющая вид

{\displaystyle (a+b)^{n}=\sum _{k=0}^{n}{\binom {n}{k}}a^{n-k}b^{k}={n \choose 0}a^{n}+{n \choose 1}a^{n-1}b+\dots +{n \choose k}a^{n-k}b^{k}+\dots +{n \choose n}b^{n}}(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n - k} b^k = {n\choose 0}a^n + {n\choose 1}a^{n - 1}b + \dots + {n\choose k}a^{n - k}b^k + \dots + {n\choose n}b^n

где {\displaystyle {n \choose k}={\frac {n!}{k!(n-k)!}}=C_{n}^{k}}{n\choose k}=\frac{n!}{k!(n - k)!}= C_n^k — биномиальные коэффициенты, {\displaystyle n}n — неотрицательное целое число.

В таком виде эта формула была известна ещё индийским и персидским математикам; Ньютон вывел формулу бинома Ньютона для более общего случая, когда показатель степени — произвольное действительное (или даже комплексное) число. В этом случае бином представляет собой бесконечный ряд (см. ниже).

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота