Координаты точки B1 (3; 4; 4) (т.к. она симметрична точке B относительно плоскости xOz, то у них совпадают координаты x и z, а y противоположна по знаку).
Объяснение:ответ на первый вопрос кроется в условии) , это прямые призмы, две четырехугольные, и первая треугольная.
1. В основании лежит прямоугольный треугольник, катеты которого 5 и 12, а гипотенуза √(25+144)=13, площадь полной поверхности равна сумме площадей двух оснований и боковой поверхности.
2*5*12/2+(5+12+13)*6=60+180=240-площадь полной поверхности, а боковой 180
2. 2*16*6+(32+12)*19=192+836=1028- площадь полной поверхности, а боковой 836
3. 2*40*80+(80+160)*60=6400+14400=20800- полная поверхность, а площадь боковой 14400
20
Объяснение:
Координаты точки B1 (3; 4; 4) (т.к. она симметрична точке B относительно плоскости xOz, то у них совпадают координаты x и z, а y противоположна по знаку).
О(0;0;0)
B1 (3; 4; 4)
В(3;-4;4)
OB=√((xb - xo)^2 + (yb - y0)^2 + (zb - zo)^2) = √((3 - 0))^2 + (-4 - 0)^2 + (4 - 0)^2)=√(9+16+16) = √41
OB=OB1=√41 -симметричны
BB1 = √((xb1 - xb)^2 + (yb1 - yb)^2 + (zb1 - zb)^2)=
=√((3 - 3))^2 + (4 - (-4))^2 + (4 - 4)^2)=√64 = 8
По т.Герона S=√(p(p-a)*(p-b)*(p-c))
p=P/2=(8+2√41)/2 = 4+√41
S=√(( 4+√41)( 4+√41-√41)^2*( 4+√41-8)) = √(16*(41-16)) = 4*5
Объяснение:ответ на первый вопрос кроется в условии) , это прямые призмы, две четырехугольные, и первая треугольная.
1. В основании лежит прямоугольный треугольник, катеты которого 5 и 12, а гипотенуза √(25+144)=13, площадь полной поверхности равна сумме площадей двух оснований и боковой поверхности.
2*5*12/2+(5+12+13)*6=60+180=240-площадь полной поверхности, а боковой 180
2. 2*16*6+(32+12)*19=192+836=1028- площадь полной поверхности, а боковой 836
3. 2*40*80+(80+160)*60=6400+14400=20800- полная поверхность, а площадь боковой 14400